Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=\left(x+y\right)^2\)
\(\Leftrightarrow x^2=x^2+2xy+y^2\)
\(\Leftrightarrow2xy+y^2=0\)
\(\Leftrightarrow y\left(2x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-2x\end{matrix}\right.\)
\(\left(x+y\right)^2=\left(x+9\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2=x^2+18x+81\)
\(\Leftrightarrow2xy-18x+y^2=81\)(1)
Thay y =0 vào (1),có:
\(0-18x+0=81\Leftrightarrow x=\frac{-9}{2}\)
Thay \(y=-2x\) vào (1),có:
\(2x.\left(-2x\right)-18x+\left(-2x\right)^2=81\)
\(\Leftrightarrow-4x^2-18x+4x^2=81\)
\(\Leftrightarrow x=-\frac{9}{2}\)
Vì \(-\frac{9}{2}\) là nghiệm âm nên pt ko có nghiệm dương
Câu 1:
\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)
Dấu "=" xảy ra <=> x = 0,3
Câu 2:
\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)
Câu 3:
\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)
=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)
Dấu "=" xảy ra <=> x = 1
a)\(x^2-2xy+y^2+1=\left(x+y\right)^2+1\ge1>0\)
b)\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)
c)\(9x^2+12x+10=\left(9x^2+12x+4\right)+6=\left(3x+2\right)^2+6\ge6>0\)
d)\(3x^2-x+1=2x^2+\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=2x^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0`\)
a) Ta có : \(x^2-6x+10\)
\(=\left(x^2-6x+9\right)+1\)
\(=\left(x-3\right)^2+1\ge1>0\forall x\)
b) Ta có : \(4x-x^2-5\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)
Vậy ...