\(|x-9|< 1\)và\(|x^2-81|\)<m.Tìm GTNN của m

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

\(x^2=\left(x+y\right)^2\)

\(\Leftrightarrow x^2=x^2+2xy+y^2\)

\(\Leftrightarrow2xy+y^2=0\)

\(\Leftrightarrow y\left(2x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-2x\end{matrix}\right.\)

\(\left(x+y\right)^2=\left(x+9\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2=x^2+18x+81\)

\(\Leftrightarrow2xy-18x+y^2=81\)(1)

Thay y =0 vào (1),có:

\(0-18x+0=81\Leftrightarrow x=\frac{-9}{2}\)

Thay \(y=-2x\) vào (1),có:

\(2x.\left(-2x\right)-18x+\left(-2x\right)^2=81\)

\(\Leftrightarrow-4x^2-18x+4x^2=81\)

\(\Leftrightarrow x=-\frac{9}{2}\)

\(-\frac{9}{2}\) là nghiệm âm nên pt ko có nghiệm dương

7 tháng 12 2018

Câu 1:

\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)

Dấu "=" xảy ra <=> x = 0,3

Câu 2:

\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)

Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)

Câu 3:

\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)

Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)

=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)

Dấu "=" xảy ra <=> x = 1

7 tháng 12 2018

Thanks bn nhìu

vui

8 tháng 10 2019

a)\(x^2-2xy+y^2+1=\left(x+y\right)^2+1\ge1>0\)

b)\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

c)\(9x^2+12x+10=\left(9x^2+12x+4\right)+6=\left(3x+2\right)^2+6\ge6>0\)

d)\(3x^2-x+1=2x^2+\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=2x^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0`\)

22 tháng 4 2019

cfvbgkm

fgvkl

ftrhyụn

2 tháng 9 2017

X=2007 đúng 100%

15 tháng 8 2018

a) Ta có :  \(x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1>0\forall x\)

b) Ta có :  \(4x-x^2-5\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

Vậy ...