Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét n tích \(x_1x_2,x_2x_3,...,x_nx_1\)mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chúng bằng 0 nên số tích có giá trị 1 bằng số tích có giá trị -1,và đều bằng \(\frac{n}{2}\). Vậy n chia hết cho 2.
Bây giờ ta sẽ chứng minh rằng số tích có giá trị -1 cũng là số chẵn.Thật vậy,xét :
\(A=\left(x_1x_2\right)\left(x_2x_3\right)...\left(x_{n-1}x_n\right)\left(x_nx_1\right)\)
Ta thấy \(A=x^2_1\cdot x^2_2...x^2_n\)nên A = 1 > 0,chứng tỏ số tích có giá trị -1 cũng là số chẵn,tức là \(\frac{n}{2}\)là số chẵn,do đó n chia hết cho 4.
Mun GiàChép trong sách nâng cao và pt toán 7 hay gì đó thì ghi nguồn nhé
Bạn có thể tham khảo lời giải tại đây:
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 x2.x3 ... xn.x1 = 0 thì... - Hoc24
#)Giải :
Từ giả thiết ta suy ra được các tích x1.x2+x2.x3+...+xn.x1 chỉ nhận 1 trong 2 giá trị là 1 và (-1)
Mà x1.x2+x2.x3+...+xn.x1 = 0 => n = 2m
Đồng thời có m số hạng = 1, m số hạng = -1
Ta nhận thấy (x1x2)+(x2x3)...(xnx1) = x21.x22.....x2n = 1
=> Số các số hạng = -1 phải là số chẵn => m = 2k
=> n = 4k => n chia hết cho 4
Lời giải:
Với $x_i\in \left\{-1;1\right\}$ nên $x_ix_j$ nhận giá trị $1$ hoặc $-1$
Do đó để tổng $n$ số hạng $x_1x_2+x_2x_3+...+x_nx_1$ bằng $0$ thì cần $\frac{n}{2}$ số hạng nhận giá trị $1$ và $\frac{n}{2}$ số hạng nhận giá trị $-1$
Suy ra:
$(x_1x_2)(x_2x_3)....(x_nx_1)=(x_1x_2...x_n)^2=(-1)^{\frac{n}{2}}.1^{\frac{n}{2}}$
$\Leftrightarrow 1=(-1)^{\frac{n}{2}}$
$\Rightarrow \frac{n}{2}$ chẵn
$\Rightarrow n\vdots 4$ (đpcm)
$
khó vãi