K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Ta có x(5 – 10x) – 3(10x – 5) = 0

ó x(5 – 10x) + 3(5 – 10x) = 0 ó (x + 3)(5 – 10x) = 0

ó x + 3 = 0 5 - 10 x = 0  ó x = - 3 10 x = 5  ó  x = - 3 x = 1 2

Nên x 1   =   - 3 ;   x 2   =   1 2  => x 1   +   x 2 = -3 +  1 2 =  - 5 2

Đáp án cần chọn là: C

12 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm5\end{cases}}\)

\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\)

\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x+5\right)\left(x-5\right)}\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{\left(x^2+10x+25\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)x}\)

\(\Leftrightarrow M=\frac{\left(x+5\right)^2}{x\left(x+5\right)}\)

\(\Leftrightarrow M=\frac{x+5}{x}\)

b) Để \(M\inℤ\)

\(\Leftrightarrow x+5⋮x\)

\(\Leftrightarrow5⋮x\)

\(\Leftrightarrow x\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà \(x\ne\pm5\)

\(\Leftrightarrow x\in\left\{1;-1\right\}\)

Vậy để \(M\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)

13 tháng 3 2020

\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\left(x\ne\pm5;x\ne0\right)\)

\(\Leftrightarrow M=\left(\frac{x}{x+5}+\frac{5}{x-5}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\left(\frac{x^2-5x}{\left(x-5\right)\left(x+5\right)}+\frac{5x+25}{\left(x-5\right)\left(x+5\right)}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{x^2+10x+25}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{\left(x+5\right)^2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)x}=\frac{x+5}{x}\)

b) M là số nguyên thì x+5 chia hết cho x

=> 5 chia hết cho x

x nguyên => x thuộc Ư (5)={-5;-1;1;5}
Vậy x={-5;-1;1;5} thì M là số nguyên

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\left(10x+3\right):8=\left(7-8x\right):12\)

\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)

\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)

\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)

\(\frac{23}{12}x=\frac{5}{24}\)

\(x=\frac{5}{46}\)

6 tháng 3 2020

E mới lớp 6 nên giải sai thì thông cảm ạ UwU

\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)

\(< =>\frac{x}{45}=\frac{32}{45}\)

\(< =>x=32\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)

\(< =>120x+36=56-64x\)

\(< =>184x=56-36=20\)

\(< =>x=\frac{20}{184}=\frac{5}{46}\)

\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)

                 \(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)

15 tháng 8 2019

a, TA CO X -3X+3=X2-3X+(3/2)2 +3/4=(X-3/2)2+3/4 >0

TUONG TU

18 tháng 10 2020

Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)

=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0

=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)

=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca

=> a2 + b2 + c2 \(\le\)2(ab + bc + ca) 

Dấu "=" xảy ra <=> a + b + c = 0

18 tháng 10 2020

Xí bài 2 ý a) trước :>

4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0

<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0

<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0

Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thế vào T ta được : 

\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)

\(T=0+1+1=2\)

10 tháng 3 2020

ĐKXĐ : \(x\ne\pm1\)

a) Ta có : 

\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)

Vậy : \(P=\frac{x^2}{x-1}\)

b) Ta có : \(x^2+2x-3=0\)

\(\Leftrightarrow x^2+3x-x-3=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow x=-3\) ( Do \(x=1\) không thỏa mãn ĐKXĐ )

Thay \(x=-3\) vào P ta có :

\(P=\frac{\left(-3\right)^2}{-3-1}=\frac{9}{-4}=-\frac{9}{4}\)

Vậy : \(P=-\frac{9}{4}\) với x thỏa mãn đề

c)  Phải là : \(x>1\) nhé bạn :

Ta có :

\(P=\frac{x^2}{x-1}=\frac{x^2-1+1}{\left(x-1\right)}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)

\(=\left(x-1+\frac{1}{x-1}\right)+2\)

Ta có : \(x>1\Rightarrow x-1>0,\frac{1}{x-1}>0\)

Áp dụng BĐT AM-GM cho 2 số dương ta có :

\(x-1+\frac{1}{x-1}\ge2\)

Do đó : \(P\ge2+2=4\)

Dấu "="xảy ra \(\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x=2\) ( Do \(x>1\) )

Vậy : GTNN của P là 4 tại \(x=2\)

bài này mình cux ko bt làm

làm nhiều rồi 

hehe

hihi

30 tháng 8 2019

3/

a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(A=x^2-2xy+y^2+x^2+2xy+y^2\)

\(A=2x^2+2y^2\)

b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(B=8ab\)

c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(C=x^2+2xy+y^2-x^2+2xy-y^2\)

\(C=4xy\)

d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(D=4x^2-4x+1-8x^2+24x-18+4\)

\(D=-4x^2+20x-13\)