\(\sqrt[3]{2}+\sqrt[3]{4}\)

Tính M = \(x^5\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 1 2019

\(x=1+\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x-1=\sqrt[3]{2}+\sqrt[3]{4}\)

\(\Rightarrow\left(x-1\right)^3=2+4+3\sqrt[3]{2.4}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)=6+6\left(x-1\right)=6x\)

\(\Rightarrow x^3-3x^2+3x-1=6x\Rightarrow x^3-3x^2-3x-1=0\)

Ta có:

\(M=\left(x^5-3x^4-3x^3-x^2\right)-x^4+4x^3-2x+2015\)

\(\Rightarrow M=x^2\left(x^3-3x^2-3x-1\right)-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2016\)

\(\Rightarrow M=-x\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2016\)

\(\Rightarrow M=2016\)

1 tháng 8 2020

Ta có \(x-1=\sqrt[3]{2}+\sqrt[3]{4}\)

<=> \(\left(x-1\right)^3=6+3.\sqrt[3]{2.4}.\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)

<=>\(x^3-3x^2+3x-1=6+6.\left(x-1\right)\)

<=>\(x^3-3x^2-3x-1=0\)

=> \(P=x^2\left(x^3-3x^2-3x-1\right)-x\left(x^3-3x^2-3x-1\right)+x^3-3x^2-3x-1+2016\)

=> \(P=2016\)

NV
14 tháng 7 2020

f/

ĐKXĐ: ...

Đặt \(\sqrt{2-x}+\sqrt{x+2}=a>0\)

\(\Rightarrow a^2=4+2\sqrt{4-x^2}\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}\)

Phương trình trở thành:

\(a+\frac{a^2-4}{2}=2\)

\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}=0\)

\(\Rightarrow4-x^2=0\Rightarrow x=\pm2\)

NV
14 tháng 7 2020

e/ ĐKXĐ: ...

Đặt \(\sqrt{x+1}+\sqrt{4-x}=a>0\)

\(\Rightarrow a^2=5+2\sqrt{\left(x+1\right)\left(4-x\right)}\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{a^2-5}{2}\)

Pt trở thành:

\(a+\frac{a^2-5}{2}=5\)

\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{4-x}=3\)

\(\Leftrightarrow5+2\sqrt{\left(x+1\right)\left(4-x\right)}=9\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=2\)

\(\Leftrightarrow\left(x+1\right)\left(4-x\right)=4\)

\(\Leftrightarrow-x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

NV
18 tháng 10 2019

1/ \(x-1=\sqrt[3]{2}\Rightarrow\left(x-1\right)^3=2\Rightarrow x^3-3x^2+3x-3=0\)

\(B=x^2\left(x^3-3x^2+3x-3\right)+x\left(x^3-3x^3+3x-3\right)+x^3-3x^2+3x-3+1945\)

\(B=1945\)

b/ Tương tự:

\(x-1=\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x^3-3x^2+3x-1=6+3\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)

\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

\(P=x^2\left(x^3-3x^2-3x-1\right)-x\left(x^3-3x^2-3x-1\right)+x^3-3x^2-3x-1+2016\)

\(P=2016\)

NV
6 tháng 8 2020

5/

Đặt \(\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=a\ge0\\\sqrt{\frac{6}{x}-2x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=\frac{3}{x}\)

Pt trở thành:

\(a-1=\frac{a^2+b^2}{2}-b\)

\(\Leftrightarrow a^2+b^2-2a-2b+2=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=1\\\sqrt{\frac{6}{x}-2x}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-x-3=0\\2x^2+x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{3}{2}\)

NV
6 tháng 8 2020

4/

ĐKXĐ: \(x\ge\frac{1}{5}\)

\(\Leftrightarrow\frac{4x-3}{\sqrt{5x-1}+\sqrt{x+2}}=\frac{4x-3}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\Rightarrow x=\frac{3}{4}\\\sqrt{5x-1}+\sqrt{x+2}=5\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{5x-1}-3+\sqrt{x+2}-2=0\)

\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}+\frac{x-2}{\sqrt{x+2}+2}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}+\frac{1}{\sqrt{x+2}+2}\right)=0\)

\(\Leftrightarrow x=2\)

20 tháng 7 2019

a) Do VT >=0 nên VP >=0 nên \(x\ge4\)

\(PT\Leftrightarrow\left(x-2\right)-\sqrt{x-2}-2=0\)

Đặt \(\sqrt{x-2}=t\ge\sqrt{4-2}=\sqrt{2}\) thì \(t^2-t-2=0\)

\(\Leftrightarrow t=2\left(loại t = -1 vì nó không thỏa mãn đk\right)\Leftrightarrow x-2=4\Leftrightarrow x=6\)

20 tháng 7 2019

b) (sai thì thôi nha) Dễ thấy x = 4 là một nghiệm

Xét x khác 4:ĐK: \(x>4\)(1) . Mặt khác do VT > 0 nên VP > 0 suy ra x < 4(2)

Do x không thể đồng thời thỏa mãn (1) và (2) nên vô nghiệm.

Vậy x = 4

NV
20 tháng 7 2020

7.

ĐKXĐ: ...

\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow10ab=3\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3b-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=3\sqrt{x+1}\\3\sqrt{x^2-x+1}=\sqrt{x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=9x+9\\9x^2-9x+9=x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-10x-8=0\\9x^2-10x+10=0\end{matrix}\right.\) (casio)

NV
20 tháng 7 2020

6.

ĐKXĐ: ...

\(\Leftrightarrow2x^2+4=3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+2b^2=3ab\)

\(\Leftrightarrow2a^2-3ab+2b^2=0\)

Phương trình vô nghiệm (vế phải là \(5\sqrt{x^3+1}\) sẽ hợp lý hơn)