Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Biến đổi:
\(H=\frac{(x^2-1)(y^2-1)}{x^2y^2}=\frac{x^2y^2-(x^2+y^2)+1}{x^2y^2}\)
\(=\frac{x^2y^2-(x+y)^2+2xy+1}{x^2y^2}=\frac{x^2y^2+2xy}{x^2y^2}=1+\frac{2}{xy}\)
Áp dụng BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow H=1+\frac{2}{xy}\geq 9\)
Do đó \(H_{\min}=9\Leftrightarrow x=y=\frac{1}{2}\)
Lời giải:
Từ \(xy+x+y=1\Rightarrow \left\{\begin{matrix} x^2+1=x^2+xy+x+y=x(x+y)+(x+y)=(x+1)(x+y)\\ y^2+1=y^2+xy+x+y=y(x+y)+(x+y)=(y+1)(x+y)\end{matrix}\right.\)
Mà \(xy+x+y=1\Rightarrow x(y+1)+(y+1)=2\Rightarrow (x+1)(y+1)=2\)
Do đó:
\(x\sqrt{\frac{2(y^2+1)}{x^2+1}}+y\sqrt{\frac{2(x^2+1)}{y^2+1}}+\sqrt{\frac{(x^2+1)(y^2+1)}{2}}\)
\(=x\sqrt{\frac{(x+1)(y+1)(y+1)(x+y)}{(x+1)(x+y)}}+y\sqrt{\frac{(x+1)(y+1)(x+1)(x+y)}{(y+1)(x+y)}}+\sqrt{\frac{(x+1)(x+y)(y+1)(x+y)}{(x+1)(y+1)}}\)
\(=x\sqrt{(y+1)^2}+y\sqrt{(x+1)^2}+\sqrt{(x+y)^2}\)
\(=x(y+1)+y(x+1)+x+y=2xy+2x+2y=2(xy+x+y)=2.1=2\)
Lời giải:
Áp dụng BĐT Cô-si với \(x; \frac{1}{x}\) là hai số dương:
\(x+\frac{1}{x}\geq 2\sqrt{x.\frac{1}{x}}=2\)
\(\Rightarrow \left(x+\frac{1}{x}\right)^2\geq 4\)
Tương tự, \(\left(y+\frac{1}{y}\right)^2\geq 4\)
\(\Rightarrow \left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\geq 8\) (đpcm)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ y=\frac{1}{y}\end{matrix}\right.\Leftrightarrow x=y=1\)
P.s: Có thể thấy điều kiện $x+y=2$ là dư thừa.
Hem thừa .-.
\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\ge\dfrac{\left(x+y+\dfrac{4}{x+y}\right)^2}{2}=8\)
\(A=\left(1-\dfrac{1}{x^2}\right)\left(1-\dfrac{1}{y^2}\right)=1+\dfrac{1}{x^2y^2}-\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương, ta có:
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\) (1)
và \(x+y\ge2\sqrt{xy}\) (2)
TỪ (2) \(\Rightarrow\) \(\dfrac{1}{x^2y^2}\ge\dfrac{16}{\left(x+y\right)^4}\) và \(\dfrac{2}{xy}\ge\dfrac{8}{\left(x+y\right)^2}\)
Mặt khác, theo đề \(x+y\le1\)
=> \(\dfrac{1}{x+y}\ge1\)
=> A \(\ge1+\dfrac{16}{\left(x+y\right)^4}+\dfrac{2}{xy}\) \(\ge1+\dfrac{16}{\left(x+y\right)^4}-\dfrac{8}{\left(x+y\right)^2}\)
\(=1+16-8=9\)
Dấu ''='' xảy ra khi x = y = 0,5
Mình đánh nhầm, dòng 2 từ dưới lên phải là \(-\dfrac{2}{xy}\) nhá ! :))
\(x^3 +y^3 + 3(x^2 +y^2 ) +4(x+y) + 4 = 0 \\\ \Leftrightarrow (x+y+2)[(x+1)^{2}+(y+1)^{2}-(x+1)(y+1)+1]=0\\\ \Rightarrow x+y=-2\Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=-\frac{2}{xy}\leq -\frac{2}{\frac{(x+y)^{2}}{4}}=-2\)
Dấu ''='' xảy ra khi \(x=y=-1\)
Câu hỏi của Thiên Diệp - Toán lớp 8 | Học trực tuyến