Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cô-si, ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge3\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}\ge1-\frac{1}{\left(y+1\right)}+1-\frac{1}{\left(z+1\right)}\)
\(\Leftrightarrow\frac{y}{\left(y+1\right)}+\frac{z}{\left(z+1\right)}\ge3\sqrt{\left(\frac{yz}{\left(y+1\right)\left(z+1\right)}\right)}\)
Ta có:
\(\frac{1}{\left(x+1\right)}\ge3\sqrt{\frac{yz}{\left(x+1\right)\left(y+1\right)}}\)(1)
\(\Leftrightarrow\frac{1}{\left(y+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(z+1\right)}\right)}\)(2)
\(\Leftrightarrow\frac{1}{\left(z+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)}\)(3)
Từ (1); (2) và (3), ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge8\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}.\text{ dau }=\text{xay ra khi }x=y=z=\frac{1}{2}\)
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
làm bừa thui,ai tích mình mình tích lại
số dư lớn nhất bé hơn 175 là 174
số nhỏ nhất có 4 chữ số là 1000
Mà 1000:175=5( dư 125)
số đó là:
\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{1000.1000}=300\)
dấu = khi x=10
gọi biểu thức ban đầu là B
xét biểu thức phụ
Q=3x/(1-x)+(4-4x)/x
do 0<x<1 nên 3x/(x-1)>0 và (4-4x)/x>0
áp dụng bđt cosy cho 2 số trên ta được :
3x/(1-x)+(4-4x)/x ≥2√(3x/(1-x)*(4-4x)/x)=2√12=4√3
dấu = xảy ra khi và chỉ khi 3x/(1-x)=(4-4x)/x và 0<x<1
suy ra 3x/(1-x)=4*(1-x)/x
suy ra 4*(1-x)^2=3x^2
suy ra |1-x|=√(3x^2/4)
suy ra 1-x=x√3/2
suy ra x=-2√3+4
lại có B-Q=3/(1-x)+4/x-3x/(1-x)-(4-4x)/x=7(bạn tự giải ra giùm mình nhé)
suy ra gtnn B=7+Q=7+4√3
dấu bằng xảy ra khi x=-2√3+4
Xét biểu thức phụ B=3x1−x+4−4xxB=3x1−x+4−4xx
Vì 0<x<1→⎧⎪ ⎪⎨⎪ ⎪⎩3x1−x>04−4xx>00<x<1→{3x1−x>04−4xx>0
AD BĐT Cô-si cho 2 số dương ta được:
B=3x1−x+4−4xx≥2√3x1−x.4−4xx=2√12=4√3B=3x1−x+4−4xx≥23x1−x.4−4xx=212=43
Dấu "=" xảy ra ↔⎧⎨⎩3x1−x=4−4xx0<x<1↔{3x1−x=4−4xx0<x<1
↔{4(1−x)2=3x20<x<1↔{4(1−x)2=3x20<x<1
↔⎧⎪⎨⎪⎩|1−x|=√3x240<x<1↔{|1−x|=3x240<x<1
↔⎧⎪⎨⎪⎩1−x=x√320<x<1↔{1−x=x320<x<1
↔x=−2√3+4↔x=−23+4
Lại có:Q−B=31−x+4x−3x1−x−4−4xx=7Q−B=31−x+4x−3x1−x−4−4xx=7
→QMIN=7+BMIN=7+4√3→QMIN=7+BMIN=7+43
Dấu "=" xảy ra ↔x=−2√3+4↔x=−23+4
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có \(A=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)
Min A = 2/a tại x = y = a
Áp dụng BĐT cô si cho:
!)\(\dfrac{3}{x}+\dfrac{9}{y}\)\(\ge2\sqrt{\dfrac{3}{x}.\dfrac{9}{y}}\ge2\sqrt{\dfrac{3.9}{xy}}=2\sqrt{\dfrac{27}{3}}=6\)
!!) Tương tự ta có:
\(3x+y\ge2\sqrt{3xy}\ge6\)
Vậy: K=\(\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)\(\ge6-\dfrac{26}{6}=\dfrac{5}{3}\)
Min K=\(\dfrac{5}{3}\) Dấu "=' xảy ra khi y=1 và x=3