K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

Áp dụng BĐT cô-si, ta có:

\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge3\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}\ge1-\frac{1}{\left(y+1\right)}+1-\frac{1}{\left(z+1\right)}\)

\(\Leftrightarrow\frac{y}{\left(y+1\right)}+\frac{z}{\left(z+1\right)}\ge3\sqrt{\left(\frac{yz}{\left(y+1\right)\left(z+1\right)}\right)}\)

Ta có:

\(\frac{1}{\left(x+1\right)}\ge3\sqrt{\frac{yz}{\left(x+1\right)\left(y+1\right)}}\)(1)

\(\Leftrightarrow\frac{1}{\left(y+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(z+1\right)}\right)}\)(2)

\(\Leftrightarrow\frac{1}{\left(z+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)}\)(3)
Từ (1); (2) và (3), ta có:

\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge8\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Rightarrow xyz\le\frac{1}{8}.\text{ dau }=\text{xay ra khi }x=y=z=\frac{1}{2}\)

26 tháng 7 2016

P=5x+3y+12/x+16/y 
=3x+12/x+y+16/y+2(x+y) 
áp dụng cosi: 3x+12/x>=2√(3.12)=12 
y+16/y>=8 
lại có 2(x+y)>=2.6=12 
nên 
P>=12+8+12=32 
dấu = khi 3x=12/x và y=16/y và x+y=6 
==> x=2; y=4 
giá trị nhỏ nhất P=32 khi x=2; y=4

11 tháng 8 2018

làm bừa thui,ai tích mình mình tích lại

số dư lớn nhất bé hơn 175 là 174

số nhỏ nhất có 4 chữ số là 1000

Mà 1000:175=5( dư 125)

số đó là:

26 tháng 7 2016

\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{1000.1000}=300\)

dấu = khi x=10

27 tháng 7 2016

gọi biểu thức ban đầu là B 
xét biểu thức phụ 
Q=3x/(1-x)+(4-4x)/x 
do 0<x<1 nên 3x/(x-1)>0 và (4-4x)/x>0 
áp dụng bđt cosy cho 2 số trên ta được : 
3x/(1-x)+(4-4x)/x ≥2√(3x/(1-x)*(4-4x)/x)=2√12=4√3 
dấu = xảy ra khi và chỉ khi 3x/(1-x)=(4-4x)/x và 0<x<1 
suy ra 3x/(1-x)=4*(1-x)/x 
suy ra 4*(1-x)^2=3x^2 
suy ra |1-x|=√(3x^2/4) 
suy ra 1-x=x√3/2 
suy ra x=-2√3+4 
lại có B-Q=3/(1-x)+4/x-3x/(1-x)-(4-4x)/x=7(bạn tự giải ra giùm mình nhé) 
suy ra gtnn B=7+Q=7+4√3 
dấu bằng xảy ra khi x=-2√3+4

27 tháng 7 2016

Xét biểu thức phụ B=3x1−x+4−4xxB=3x1−x+4−4xx
Vì 0<x<1→⎧⎪ ⎪⎨⎪ ⎪⎩3x1−x>04−4xx>00<x<1→{3x1−x>04−4xx>0
AD BĐT Cô-si cho 2 số dương ta được:
B=3x1−x+4−4xx≥2√3x1−x.4−4xx=2√12=4√3B=3x1−x+4−4xx≥23x1−x.4−4xx=212=43
Dấu "=" xảy ra ↔⎧⎨⎩3x1−x=4−4xx0<x<1↔{3x1−x=4−4xx0<x<1
↔{4(1−x)2=3x20<x<1↔{4(1−x)2=3x20<x<1
↔⎧⎪⎨⎪⎩|1−x|=√3x240<x<1↔{|1−x|=3x240<x<1
↔⎧⎪⎨⎪⎩1−x=x√320<x<1↔{1−x=x320<x<1
↔x=−2√3+4↔x=−23+4
Lại có:Q−B=31−x+4x−3x1−x−4−4xx=7Q−B=31−x+4x−3x1−x−4−4xx=7
→QMIN=7+BMIN=7+4√3→QMIN=7+BMIN=7+43
Dấu "=" xảy ra ↔x=−2√3+4↔x=−23+4

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

24 tháng 7 2016

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có \(A=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)

Min A = 2/a tại x = y = a

14 tháng 7 2018

Áp dụng BĐT cô si cho:

!)\(\dfrac{3}{x}+\dfrac{9}{y}\)\(\ge2\sqrt{\dfrac{3}{x}.\dfrac{9}{y}}\ge2\sqrt{\dfrac{3.9}{xy}}=2\sqrt{\dfrac{27}{3}}=6\)

!!) Tương tự ta có:

\(3x+y\ge2\sqrt{3xy}\ge6\)

Vậy: K=\(\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)\(\ge6-\dfrac{26}{6}=\dfrac{5}{3}\)

Min K=\(\dfrac{5}{3}\) Dấu "=' xảy ra khi y=1 và x=3

16 tháng 7 2018

cám ơn nha