\(^{x^2}\)-3x + \(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

ĐKXĐ : \(x\ne0\)

\(A=x^2-3x+\frac{4}{x}+2016=\left(x^2-4x+4\right)+\left(x+\frac{4}{x}\right)+2012\)

\(A=\left(x-2\right)^2+\left(x+\frac{4}{x}\right)+2012\ge0+2\sqrt{x.\frac{4}{x}}+2012=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\x=\frac{4}{x}\end{cases}\Leftrightarrow x=2}\)

... 

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

20 tháng 12 2017

1)Ta có:
\(A=\left(x^2-4x+4\right)+x+\dfrac{4}{x}+2012=\left(x-2\right)^2+x+\dfrac{4}{x}+2012\)Theo bđt cô-si ta có:
\(x+\dfrac{4}{x}\ge2\sqrt{\dfrac{x.4}{x}}=4\)
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow A\ge0+4+2012\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\x=\dfrac{4}{x}\end{matrix}\right.\Rightarrow x=2}\)

20 tháng 12 2017

2)Ta có:
\(B=\left(y^2-4y+4\right)+3y+\dfrac{12}{y}+2012=\left(y-2\right)^2+3y+\dfrac{12}{y}+2012\)Áp dụng bđt cô si ta có:
\(3y+\dfrac{12}{y}\ge2\sqrt{\dfrac{3y.12}{y}}=12\)
\(\left(y-2\right)^2\ge0\)
\(\Rightarrow B\ge0+12+2012=2024\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}\left(y-2\right)^2=0\\3y=\dfrac{12}{y}\end{matrix}\right.\Rightarrow y=2}\)

17 tháng 3 2020

\(\text{Ta có:}A+2=x^2+3x+\frac{1}{4}+2=x^2+3x+\frac{9}{4}=x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2=\left(x+\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow A+2\ge0\Rightarrow A\ge-2\)

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

21 tháng 8 2017

Cách 1:

\(A=\frac{3x^4+16}{x^3}=\frac{x^4+x^4+x^4+16}{x^3}\)

\(\ge\frac{4\sqrt[4]{16.x^{12}}}{x^3}=4.2=8\)

Vậy GTNN là 8 đạt được tại x = 2

21 tháng 8 2017

Cách 2: 

\(A=\frac{3x^4+16}{x^3}=8+\frac{3x^4-8x^3+16}{x^3}\)

\(=8+\frac{\left(x-2\right)^2\left(3x^2+4x+4\right)}{x^3}\ge8\)

Dấu = xảy ra khi x = 2

23 tháng 3 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(4x+\frac{1}{4x}\ge2\sqrt{4x\cdot\frac{1}{4x}}=2\)

=> \(A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016\)

=> \(A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014\)

=> \(A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014\)

hay \(A\ge2014\). Đẳng thức xảy ra <=> \(\hept{\begin{cases}4x=\frac{1}{4x}\\2\sqrt{x}-1=0\end{cases}}\Rightarrow x=\frac{1}{4}\)

Vậy GTNN của A = 2014 <=> x = 1/4

5 tháng 9 2021

Áp dụng BĐT AM-GM cho các số dương ta có:

\(\frac{1}{2x}+2x\geq 2\)

\(\frac{9}{y}+y\geq 6\)

\( \frac{7}{3}(x+y)\geq \frac{7}{3}.\frac{7}{2}=\frac{49}{6}\)

Cộng theo vế các BĐT trên ta có:

\(P\geq \frac{97}{6} hay P_{\min}=\frac{97}{6} \)

Dấu "=" xảy ra khi 

\((x,y)=(\frac{1}{2}, 3)\)

5 tháng 9 2021

Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y >= 7/2 ta có :

\(A=\frac{13}{3}x+\frac{10}{3}y+\frac{1}{2x}+\frac{9}{y}=\left(2x+\frac{1}{2x}\right)+\left(y+\frac{9}{y}\right)+\frac{7}{3}\left(x+y\right)\)

\(\ge2\sqrt{2x\cdot\frac{1}{2x}}+2\sqrt{y\cdot\frac{9}{y}}+\frac{7}{3}\cdot\frac{7}{2}=2+6+\frac{49}{6}=\frac{97}{6}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x,y>0\\2x=\frac{1}{2x};y=\frac{9}{y}\\x+y=\frac{7}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=3\end{cases}}\)