Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình sửa bài 1. bạn ghi đề sai " ác " quá
1. cho góc \(\widehat{xOy}\)và tia Oz nằm trong góc đó sao cho \(\widehat{xOz}=4.\widehat{yOz}\). tia phân giác Ot của góc xOz sao cho .....
x O y t z
Ta có : \(Ot\perp Oy\)nên \(\widehat{zOt}+\widehat{yOz}=90^o\)
Mà Ot là phân giác của \(\widehat{xOz}\)nên \(\widehat{zOt}=\frac{1}{2}.\widehat{xOz}\)
\(\Rightarrow\frac{1}{2}.\widehat{xOz}+\widehat{yOz}=90^o\)
Mà \(\widehat{xOz}=4.\widehat{yOz}\)
\(\Rightarrow\frac{1}{2}.4.\widehat{yOz}+\widehat{yOz}=90^o\Rightarrow3.\widehat{yOz}=90^o\Rightarrow\widehat{yOz}=30^o\)
Do đó : \(\widehat{xOy}=\widehat{xOz}+\widehat{yOz}=4.\widehat{yOz}+\widehat{yOz}=5.\widehat{yOz}=150^o\)
vì ot vuông góc với oy => góc xot =90 độ
mà ot là tia phân giác của góc xoy => góc xoy=2.xot =180 độ
vì góc xoz nằm trong góc xoy và góc xoz =4.yoz
=> yoz+4yoz=180 độ
=> 5yoz = 180 độ
=> yoz=36
=> xoz=36.4=144
p/s: đề bảo tính một mk xoy nhưng họ cho cả xoz, yoz mk nghĩ pk có liên quan nên tính thêm :>
Xin lỗi bạn Tiểu Hy_Queen, nhưng bạn đã làm sai rồi. Đáp án :\(\widehat{xOy}\)=150 độ
a, Xét △AOM vuông tại A và △BOM vuông tại B
Có: AOM = BOM (gt)
OM là cạnh chung
=> △AOM = △BOM (ch-gn)
=> AM = MB (2 cạnh tương ứng)
và OA = OB (2 cạnh tương ứng)
=> △OAB cân tại O
b, Xét △DOM và △EOM
Có: OD = OE (gt)
DOM = EOM (gt)
OM là cạnh chung
=> △DOM = △EOM (c.g.c)
=> MD = ME (2 cạnh tương ứng)
120 y x m y' m d c O
a) Ta có: \(\widehat{xOy}=120^o\)
có Om là tia phân giác
=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)
Oy' là tia đối tia Oy
=> \(\widehat{yOy'}=180^o\)
=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)
=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)
Mặt khác Ox nằm giữa hai tia Om, Oy'
=> Õx là phân giác góc y'Om
b) Ta có: Od nằm phóa ngoài góc xOy
Oy' nằm phía ngoài góc xOy
Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)
=> Oy' nằm giữa hai tia Ox, Od
c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)
d) Ta có: On là phân giác góc dOc
mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)
=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)
=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)
Bạn tự vẽ hình nha ==''
a.
xOA + AOB + BOy = xOy
300 + AOB + 300 = 900
AOB = 900 - 600
AOB = 300
mà xOA = 300
=> AOB = xOA
=> OA là tia phân giác của xOB
b.
AOy = AOB + BOy = 300 + 300 = 600
mà AOy = yOC (Oy là tia phân giác của AOC)
=> yOC = 600
BOC = BOy + yOC = 300 + 600 = 900
=> OB _I_ OC
x O z y t A B C M H K I N
Gọi I là giao điểm của MC và OB; MC giao Ox tại N
Từ điểm I kẻ IH vuông góc với MA tại H; IK vuông góc với tia Ox tại K
Góc ^xOz=1200, phân giác Oy => ^xOy=^yOz=600
Do Ot là phân giác ^xOy => OC là phân giác góc ^NOI. Mà OC vuông góc với NI
=> Tam giác ONI cân tại O
Lại có ^NOI hay ^xOy=600 => Tam giác NOI là tam giác đều
Ta thấy tam giác NOI có 2 đường cao OC và IK => OC=IK (1)
Ta có: IH và KA vuông góc với AM => IM // KA (Quan hệ //, vuông góc)
Tương tự: IK // AH
=> IH=KA; IK=AH (t/c đoạn chắn) (2)
Từ (1) và (2) => OC=AH (*)
Do tam giác NOI đều => ^OIN=600 => ^BIM=600 (Đối đỉnh) (3)
IH//KA (cmt) => IH//ON. Mà ^ONI=600 => ^HIM=600 (4)
(3); (4) => ^BIM=^HIM
=> C/m được \(\Delta\)IBM=\(\Delta\)IHM (Cạnh huyền góc nhọn) => MB=MH
=> MA - MB = MA - MH = AH (**)
Từ (*) và (**) => MA - MB = OC (đpcm).
Chúc bạn học tốt !
=> MA - MB = MA - MH = AH (**)
Từ (*) và (**) => MA - MB = OC (đpcm).