Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy ngay (Cạnh huyền - góc nhọn)
b) Do
Mà AB = AC nên AO là đường trung trực đoạn thẳng BC hay AO vuông góc BC.
c) Do OB = OC nên OB = 5cm.
Áp dụng định lý Pi-ta-go cho tam giác vuông BEO ta có:
EC = EO + OC = 8cm
Vậy thì áp dụng định lý Pi-ta-go cho tam giác vuông BEC ta có:
d) Ta thấy ngay hay tam giác ABC là tam giác đều.
a, Xét △AOM vuông tại A và △BOM vuông tại B
Có: AOM = BOM (gt)
OM là cạnh chung
=> △AOM = △BOM (ch-gn)
=> AM = MB (2 cạnh tương ứng)
và OA = OB (2 cạnh tương ứng)
=> △OAB cân tại O
b, Xét △DOM và △EOM
Có: OD = OE (gt)
DOM = EOM (gt)
OM là cạnh chung
=> △DOM = △EOM (c.g.c)
=> MD = ME (2 cạnh tương ứng)
Bạn tự vẽ hình nhé
a, Xét tam giác OBM và tam giác OAM có: góc BOM = AOM,OBM=OAM
Do đó : OMB=OMA
Xét tam giác OBM=tam giácOAM (c.g.c)
b,Ta có :tam giác OBM = tam giác OAM (ý a)
Do đó: OB=OA(2 cạnh tương ứng)
Nên:tam giác BOA cânt ại A
c, Ta có :tam giác OBM= tam giác OAM (ý a)
Do đó: MB=MA (2 cạnh tương ứng)
Xét tam giác MBE = tam giác MAD (g.c.g)
Do đó MD=ME (2 cạnh tương ứng )
d, Ta có :OE=OB+BE
và:OD=OA+AD
Mà : OA=OB(CMT);BE=AD(vì tam giác MBE = tam giác MAD )
Nên:OE=OD
Gọi OM cắt DE tại I
Xét tam giác DOI=tam giác EOI (c.g.c)
Do đó :OID = OIE (2 góc tương ứng)
Mà OID + OIE= 180 độ(kề bù)
Nên : OID = OIE = 90 độ
Do đó: OM vuông góc DE
Chỗ nào k hiểu nt hỏi mk nhé
x O y A B D E 1 2 M 1 2 I 1 2 1 1 2 2
a) Xét \(\Delta OMA\)và \(\Delta OMB\)có :
\(OM\)chung
\(\widehat{O_1}=\widehat{O_2}\)( vì OM là tia phân giác của \(\widehat{xOy}\))
=> \(\Delta OMA=\Delta OMB\)( cạnh huyền - góc nhọn )
=> \(MA=MB\)( hai cạnh tương ứng )
=> \(OA=OB\)( hai cạnh tương ứng )
b) Vì \(OA=OB\)=> \(\Delta OAB\)là tam giác cân tại O
c) ( Hình mình vẽ thiếu, bạn nhớ bổ sung nhé )
Ta có : \(MA\perp Ox\)=> \(\widehat{A_1}=\widehat{A_2}=90^0\)
Tương tự : \(MB\perp Ox\)=> \(\widehat{B_1}=\widehat{B_2}=90^0\)
Xét \(\Delta MAD\)và \(\Delta MBE\)có :
\(\widehat{A_2}=\widehat{B_2}\left(cmt\right)\)
\(MA=MB\left(gt\right)\)
\(\widehat{M_1}=\widehat{M_2}\left(dd\right)\)
=> \(\Delta MAD=\Delta MBE\left(g.c.g\right)\)
=> \(MD=ME\)( hai cạnh tương ứng )
=> \(AD=BE\)( hai cạnh tương ứng )
d) Nối D với E được đoạn thẳng DE cắt OM tại I
Ta có : \(OA+AD=OD\)
\(OB+BE=OE\)
mà \(OA=OB\), \(AD=BE\)
=> \(OD=OE\)
Xét \(\Delta OID\)và \(\Delta OIE\)ta có :
\(OD=OE\left(cmt\right)\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(OM\)chung
=> \(\Delta OID\) = \(\Delta OIE\)( c.g.c )
=> \(\widehat{I_1}=\widehat{I_2}\)( hai góc tương ứng ) ( 1 )
Ta có : \(\widehat{I_1}+\widehat{I_2}=180^0\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{I_1}=\widehat{I_2}=\frac{180^0}{2}=90^0\)
=> \(OI\perp DE\)hay \(M\perp DE\)
* Ủng hộ nhé *
120 y x m y' m d c O
a) Ta có: \(\widehat{xOy}=120^o\)
có Om là tia phân giác
=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)
Oy' là tia đối tia Oy
=> \(\widehat{yOy'}=180^o\)
=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)
=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)
Mặt khác Ox nằm giữa hai tia Om, Oy'
=> Õx là phân giác góc y'Om
b) Ta có: Od nằm phóa ngoài góc xOy
Oy' nằm phía ngoài góc xOy
Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)
=> Oy' nằm giữa hai tia Ox, Od
c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)
d) Ta có: On là phân giác góc dOc
mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)
=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)
=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)
A B C D E M N 1 1 2 2 3 3
Bài làm
a) Vì tam giác ABC cân tại A
=> Góc ABC = góc ACB ( 2 góc ở đáy )
Xét tam giác ABC ta có:
A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )
hay ABC + ACB = 180o - A
=> 2ABC = 180o - A ( 1 )
Ta có: AB + BD = AD
AC + CE = AE
Mà AB = AC ( giả thiết )
BD = CE ( giả thiết )
=> AD = AE
=> Tam giác ADE cân tại A
=> Góc D = góc E
Xét tam giác ADE
Ta có: A + D + E = 180o
hay D + E = 180o - A
=> 2D = 180o - A ( 2 )
Từ ( 1 ) và( 2 ) => 2D = 2ABC
=> D = ABC
Mà góc D và góc ABC ở vị trí đồng vị
=> DE // BC ( đpcm )
b) Ta có: B1 = B2 ( 2 góc đối đỉnh )
C1 = C2 ( 2 góc đối đỉnh )
Mà B1 = C1 ( tam giác ABC cân tại A )
=> B2 = C2
Xét tam giác MBD và tam giác NCE
có: Góc BMD = góc CNE = 90o
cạnh huyền: BD = CE ( giả thiết )
Góc nhọn: B2 = C2 ( chứng minh trên )
=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )
=> MB = NC. ( 2 cạnh tương ứng )
Ta có: MB + BC = MC
NC + BC = NB
Mà MB = NC ( chứng minh trên )
Cạnh BC chung
=> MC = NB
Xét tam giác ACM và tam giác ABN
Có: AB = AC ( giả thiết )
B1 = C1 ( Tam giác ABC cân tại A )
MC = NB ( chứng minh trên )
=> Tam giác ACM = tam giác ABN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
=> Tam giác AMN cân tại A ( đpcm )
~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~
a) Vì AB=AC mà BD=CE
Suy ra : AB+BD=AC+CE
Suy ra AD= AE
Suy ra tam giác DAE cân tại A
Suy ra \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)
Ta có tam giác ABC cân tại A
suy ra \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)
Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)
mà hai góc ở vị trí đồng vị . Suy ra \(DE//BC\)
A O x y B C E 1 2
Xét ΔBOA và ΔCOA, có:
\(\widehat{O_1}=\widehat{O_2}\) ( Vì OA là tia phân giác của \(\widehat{xOy}\))
OA là cạnh chung
\(\widehat{ABO}=\widehat{ACO}=90^0\)
⇒ΔBOA = ΔCOA ( Cạnh huyền - góc nhọn)
⇒ OB=OC ( Hai cạnh tương ứng)
Mà OC = 5cm ⇒ OB = 5cm
Xét ΔEBO, có: \(\widehat{E}=90^0\)
Áp dụng định lí pitago trong ΔEBO,có:
\(BO^2=BE^2+EO^2\Rightarrow BE^2=BO^2-EO^2=5^2-3^2=16\)
\(\Rightarrow BE=\sqrt{16}=4cm\)
Ta có: EC = EO + OC = 3+5 = 8 cm
Xét ΔEBC, có \(\widehat{E}=90^0\)
Áp dụng định lí pitago trong ΔEBC,có:
\(BC^2=BE^2+EC^2=4^2+8^2=80\Rightarrow BC=\sqrt{80}=4\sqrt{5}cm\)
BC=8,94427191. bn nhé
tick giùm mk