\(\widehat{xOy}=120^o\). Ở phía ngoài của góc vẽ hai tia Oc và Od sao cho Oc⊥Ox và Od...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2022

Lâu không làm nên có thể lời giải của mình hơi sai
O x y c d n m y' m

Ta có : \(\widehat{cOd}=360^o-\widehat{xOy}-\widehat{cOx}-\widehat{dOy}\)

\(\Rightarrow\widehat{cOd}=360^o-120^o-90^o-90^o=60^o\)

Mà On là tia phân giác của \(\widehat{cOd}\) \(\Rightarrow\widehat{cOn}=\dfrac{60^o}{2}=30^o\)

Mà \(\widehat{cOn}=\widehat{cOy'}\) ( do Oc là tia phân giác của \(\widehat{nOy'}\) )

\(\Rightarrow\widehat{cOn}=\widehat{cOy'}=30^o\Rightarrow\widehat{yOd'}=3.30^o=90^o\) 

=> Od ⊥ Oy' mà Od ⊥ Oy => Oy và Oy' là 2 tia đối nhau

b) Ta có : \(\widehat{y'On}=\widehat{y'Oc}+\widehat{cOn}=2.30^o=60^o\)

c) Vì Om là tia phân giác của \(\widehat{xOy}\)

\(\Rightarrow\widehat{mOy}=\dfrac{120^o}{2}=60^o\)\(\Rightarrow\widehat{mOy}=\widehat{y'On}\left(=60^o\right)\)

Mà Oy và Oy' là 2 tia đối nhau , On và Om không cùng nằm trên nửa mặt phẳng có bờ là tia Oy

=> \(\Rightarrow\widehat{mOy}\text{ và }\widehat{y'On}\) là 2 góc đối đỉnh

17 tháng 6 2019

120 y x m y' m d c O

a) Ta có: \(\widehat{xOy}=120^o\)

có Om là tia phân giác 

=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)

Oy' là tia đối tia Oy

=> \(\widehat{yOy'}=180^o\)

=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)

=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)

Mặt khác Ox nằm giữa hai tia Om, Oy'

=> Õx là phân giác góc y'Om

b) Ta có: Od nằm phóa ngoài góc xOy

Oy' nằm phía ngoài góc xOy

Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)

=> Oy' nằm giữa hai tia Ox, Od

c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)

d) Ta có: On là phân giác góc dOc

mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)

=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)

=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)

20 tháng 8 2017

Mình nhờ các bạn vậy: Mysterious Person, Đời về cơ bản là buồn... cười!!!, Nguyễn Nhã Hiếu,...

20 tháng 8 2017

Giúp mình: Eren Jeager , Nguyễn Huy Tú, Ace Legona,...

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

13 tháng 6 2017

Những bài này có thể search trên google trước khi làm nhé

Link tham khảo :

Câu hỏi của Vương Hàn - Toán lớp 7 | Học trực tuyến

Good Luck

8 tháng 8 2019

Mk đg cần gấp giúp mk với nha mn :)))

8 tháng 9 2019

KT lại đề bài nha bạn hía ngoài của góc vẽ 2 tia Oc và Od sao cho Oc vuông góc với Ox và Od vuông góc với Oy. 

8 tháng 8 2019

1. x O x' y y'

Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)

=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)

 \(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)

Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)

  

8 tháng 8 2019

1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)

=> \(2.\widehat{x'Oy}=210^0\)

=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)

          => \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)

2.  O x y x' y' m m'

Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)

          \(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}\) 

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì  Om là tia p/giác)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\) 

=> Om' nằm giữa Ox' và Oy'

=> Om' là tia p/giác của góc x'Oy'

b) Tự viết