Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a.\)Vì \(\widehat{xOy}\)kề bù với góc \(\widehat{yOz}\)\(\Rightarrow\)\(\widehat{xOy}+\widehat{yOz}=180^0\)
\(\Rightarrow\) \(60^0+\widehat{yOz}=180^0\)
\(\Rightarrow\) \(\widehat{yOz}=180^0-60^0=120^0\)
\(b.\) Vì \(Ot\)là tia phân giác \(\widehat{xOy}\)\(\Rightarrow\)\(\widehat{tOy}=\frac{\widehat{xOy}}{2}=\frac{60^0}{2}=30^0\)
Vì \(Om\)là tia phân giác \(\widehat{yOz}\)\(\Rightarrow\)\(\widehat{yOm}=\frac{\widehat{yOz}}{2}=\frac{120^0}{2}=60^0\)
Vì \(Oy\)nằm giữa 2 tia \(Ot\)và \(Om\) \(\Rightarrow\) \(\widehat{tOy}+\widehat{yOm}=\widehat{tOm}\)
\(\Rightarrow\) \(30^0+60^0=\widehat{tOm}\)
\(\Rightarrow\) \(90^0=\widehat{tOm}\)
Vậy \(\widehat{tOm}\)là góc vuông
Bài 2: Vì góc xOy và yoz kề bù nên góc xOz= 180 độ Ta có : Góc xoy + góc yoz = xOz Hay : 60 độ + góc yoz = 180 độ góc yoz = 180 độ - 60 độ = 120 độ Vậy....
O x y z A B
Vì OA là tia phân giác của góc \(\widehat{xOy}\)nên :
\(\widehat{xOA}=\widehat{AOy}=\frac{\widehat{xOy}}{2}=\frac{150^o}{2}=75^o\)
Vì góc xOA > xOz ( 75o> 30o) nên z nằm giữa OA và Ox
Ta có : \(\widehat{xOz}+\widehat{zOA}=\widehat{xOA}\)
\(30^o+\widehat{zOA}=75^o\Leftrightarrow\widehat{zOA}=45^o\)
Vì OB là tia phân giác của góc zOx
Nên : \(\widehat{zOB}=\widehat{BOx}=\frac{\widehat{zOx}}{2}=\frac{30^o}{2}=15^o\)
\(\widehat{AOB}=\widehat{AOz}+\widehat{zOB}\)
\(\widehat{AOB}=45^o+15^o\Leftrightarrow\widehat{AOB}=60^o\)
O x y A z B
Vì tia OA là tia phân giác của \(\widehat{xOy}\)(bài cho)
\(\Rightarrow\widehat{yOA}=\widehat{AOx}=\frac{\widehat{xOy}}{2}=\frac{150^o}{2}=75^o\)
Vì tia OB là tia phân giác của \(\widehat{xOz}\)(bài cho)
\(\Rightarrow\widehat{xOB}=\widehat{BOz}=\frac{\widehat{xOz}}{2}=\frac{30^{ }^o}{2}=15^o\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ox có \(\widehat{xOB}=15^o,\widehat{AOx}=75^o\Rightarrow\widehat{xOB}< \widehat{AOx}\)
\(\Rightarrow\)Tia OB nằm giữa 2 tia Ox và OA
\(\Rightarrow\widehat{xOB}+\widehat{AOB}=\widehat{AOx}\)
Thay số:
\(\Rightarrow15^o+\widehat{AOB}=75^o\)
\(\Rightarrow\widehat{AOB}=75^o-15^o\)
\(\Rightarrow\widehat{AOB}=60^o\)
Vậy \(\widehat{AOB}=60^o\)
O x y z m n t
a,Trên cùng 1 nửa mp bờ chứa tia Ox có \(\widehat{xOy}< \widehat{xOz}\left(30^o< 90^o\right)\)
=> tia Oy nằm giữa hai tia Ox ,Oz
\(\Rightarrow\widehat{yOz}=\widehat{xOz}-\widehat{xOy}=90^o-30^o=60^o\)
b,Vì tia Om là tia p/g của \(\widehat{xOy}\Rightarrow\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}=\frac{1}{2}.30^o=15^o\)
Vì On là tia p/g của \(\widehat{yOz}\Rightarrow\widehat{yOn}=\widehat{nOz}=\frac{1}{2}\widehat{yOz}=\frac{1}{2}.60^o=30^o\)
Trên cùng 1 nửa mp bờ chứa tia Oz có \(\widehat{zOn}< \widehat{zOx}\left(30^o< 90^o\right)\)
=> Tia On nằm giữa hai tia Oz,Ox
\(\Rightarrow\widehat{nOx}=\widehat{zOx}-\widehat{zOn}=90^o-30^o=60^o\)
Trên cùng 1 nửa mp bờ chứ tia Ox có \(\widehat{xOm}< \widehat{xOn}\left(15^o< 60^o\right)\)
=>Tia Om nằm giữa hai tia Ox ,On
\(\Rightarrow\widehat{mOn}=\widehat{xOn}-\widehat{xOm}=60^o-15^o=45^o\)
c,Vì tia Om và Ot là hai tia đối nhau \(\Rightarrow\widehat{tOy}\)và \(\widehat{yOm}\)kề bù
\(\Rightarrow\widehat{tOy}+\widehat{yOm}=180^o\)
\(\Rightarrow\widehat{tOy}+15^o=180^o\)
\(\Rightarrow\widehat{tOy}=165^o\)
b) OB nằm giữa 2 tia đối nhau Ox,OA nên 2 tia Ox,OA thuộc 2 nửa mặt phẳng đối nhau bờ OB (1)
Oy là phân giác\(\widehat{xOB}\)nên Oy nằm giữa Ox,OB =>\(\widehat{yOB}< \widehat{xOB}\); Ox,Oy ở cùng nửa mặt phẳng không chứa OA bờ OB (2)
Ot là phân giác\(\widehat{AOB}\)nên Ot nằm giữa OA,OB =>\(\widehat{tOB}< \widehat{AOB}\); Ot,OA ở cùng nửa mặt phẳng không chứa Ox bờ OB (3)
Từ (1),(2),(3),ta có Oy,Ot nằm ở 2 nửa mặt phẳng đối nhau bờ OB ;\(\widehat{yOB}+\widehat{tOB}< \widehat{xOB}+\widehat{AOB}=180^0\)
=> OB nằm giữa Oy,Ot\(\Rightarrow\widehat{yOt}=\widehat{yOB}+\widehat{tOB}\)mà
\(\widehat{yOB}=\frac{\widehat{xOB}}{2};\widehat{tOB}=\frac{\widehat{AOB}}{2}\)(Oy,Ot lần lượt là phân giác\(\widehat{xOB},\widehat{AOB}\))\(\Rightarrow\widehat{yOt}=\frac{\widehat{xOB}+\widehat{AOB}}{2}=\frac{180^0}{2}=90^0\)
P/S : 1 cách chứng minh tia nằm giữa 2 tia :
Cho 2 tia Ox,Oz nằm ở 2 nửa mặt phẳng đối nhau bờ Oyvà tổng 2 góc kề nhau trên không vượt quá 1800 thì Oy nằm giữa Ox,Oz
a) Ox,OA đối nhau nên\(\widehat{AOB},\widehat{xOB}\)kề bù\(\Rightarrow\widehat{AOB}+\widehat{xOB}=180^0\Rightarrow\widehat{xOB}\)= 1800 - 500 = 1300
b) Chứng minh OB nằm giữa Oy,Ot rồi mình giải
Ta có: \(\widehat{xOy}+\widehat{yOz}=150^o\)
Vì OA là phân giác \(\widehat{xOy}\)nên suy ra \(\widehat{xOA}=\widehat{AOy}=\frac{1}{2}\widehat{xOy}\)
Vì OB là tia phân giác \(\widehat{zOy}\)nên suy ra \(\widehat{yOB}=\widehat{BOy}=\frac{1}{2}\widehat{yOz}\)
Vậy suy ra: \(\widehat{AOB}=\widehat{AOy}+\widehat{yOB}=\frac{1}{2}\widehat{xOy}+\frac{1}{2}\widehat{yOz}=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\frac{1}{2}.150^o=75^o\)
a)
Vì Oa là phân giác của xOy => yOa = xOa = 90 : 2 = 45độ
Vì Ob là phân giác của xOa => xOb = aOb = 45 : 2 = 22,5độ
Vì Oc là phân giác của xOb => xOc = bOc = 22,5 : 2 = 11,25
b)
Mk đang nghĩ :V
b)
Để xOc nhỏ nhất thì xOb nhỏ nhất
Để xOb nhỏ nhất thì xOa nhỏ nhất
Để xOa nhỏ nhất thì xOy nhỏ nhất
=> ko tìm đc giá trị chính thức nhưng :
để xOc nhỏ nhất thì xOy phải nhỏ nhất
P/s : ko chắc