Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1.Xét tam giác OAM và tam giác OBM,ta có:
Cạnh OM là cạnh chung
OA = OB (gt)
góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)
=> Tam giác OAM = tam giác OBM (c.g.c)
=> MA = MB ( 2 cạnh tương ứng)
2.Ta có: MA = MB (cmt)
=> Tam giác AMB là tam giác cân
góc MAH = góc MBH ( cmt)
MA = MB ( cmt)
góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)
=> tam giác AMH và tam giác BMH ( g.c.g)
=> AH = HB ( 2 cạnh tương ứng)
=> H là trung điểm của AB (1)
Vì tam giác AMH = tam giác BMH (cmt)
=>góc MHA = góc MHB ( 2 góc tương ứng)
mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)
=> góc MHA = góc MHB= 180 độ : 2 = 90 độ
=> MH vuông góc với AB (2)
Từ (1) và (2) => MH là đường trung trực của AB
=> OM là đường trung trực của AB ( vì H thuộc OM )
3.Vì H là trung điểm của AB (cmt)
=> AH =HB = AB : 2 = 6 :2 = 3 (cm)
Xét tam giác OAH vuông tại H
Ta có OA2 =OH2+AH2 (định lý pi ta gô)
\(\Rightarrow\)52=OH2+32
\(\Rightarrow\)25=OH2+9
\(\Rightarrow\)OH2 =25-9
\(\Rightarrow\)OH2=16
\(\Rightarrow\)OH2=\(\sqrt{16}\)
\(\Rightarrow\)OH2=4
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình các bạn tự vẽ nha thôg cảm dùm mình
Giải
Trên tia Ox lấy A" ; trên tia Oy lấy B' sao cho OA'=OB'=a
Ta có OA'+OB'= OA+OB =2a \Rightarrow AA'=BB'
Gọi H và K lần lượt là hình chiếu của A và B trên đường A'B'
ΔΔHAA'=ΔΔKBB'( cạnh huyền-Góc nhọn)
\Rightarrow HA'=KB',do đó HK=A'B'
Ta chứng minh đc HK<AB( dấu = \Leftrightarrow A trùng A',B trùng B'
do đó A'B'\leq AB.vậy AB nhỏ nhất \Leftrightarrow OA=OB=a
![](https://rs.olm.vn/images/avt/0.png?1311)
O y x A t m n
a) Ta có: \(\widehat{xOy}+\widehat{OAt}=120^0+60^0=180^0\)
Mà hai góc ở vị trí: trong cùng phía bù nhau
Nên At // Oy
b) On là tia phân giác của góc xOy \(\Rightarrow\widehat{yOn}=\widehat{xOn}=\frac{\widehat{xOy}}{2}=\frac{120^0}{2}=60^0\)
Vì At // Oy => \(\widehat{xAt}=\widehat{xOy}=120^0\) (đồng vị)
Am là tia phân giác của góc xAt \(\Rightarrow\widehat{xAm}=\widehat{tAm}=\frac{\widehat{xAt}}{2}=\frac{120^0}{2}=60^0\)
Ta thấy \(\widehat{xAm}=\widehat{xOn}=60^0\)
Mà hai góc này ở vị trí đồng vị
=> On // Am
Trên tia Ox lấy A', trên tia Oy lấy B' sao cho OA' = OB' = a.
Ta có: \(OA'+OB'=OA+OB=2a\Rightarrow AA'=BB'\)
Gọi H và K lần lượt là hình chiếu của A và B trên đường thẳng A'B'.
Tam giác HAA' = tam giác KBB'. (cạnh huyền - góc nhọn )
Suy ra: HA' = KB'. Do đó HK = A'B'.
Ta chứng minh được:
\(HK\le AB\) ( dấu "=" <=> A trùng A', B trùng B'.
Do đó \(A'B'\le AB\)
Vậy AB nhỏ nhất <=> OA = OB = a.