Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOMA vuông tại M và ΔONA vuông tại N có
OA chung
\(\widehat{MOA}=\widehat{NOA}\)
Do đó: ΔOMA=ΔONA
Suy ra: OM=ON
hayΔOMN cân tại O
b: Xét ΔOMP vuông tại M và ΔONQ vuông tại N có
OM=ON
góc MOP chung
Do đo;s ΔOMP=ΔONQ
Suy ra: OP=OQ
hay MQ=NP
Xét ΔAMQ vuông tại M và ΔANP vuông tại N có
MA=NA
MQ=NP
Do đó; ΔAMQ=ΔANP
Suy ra: AP=AQ
c: \(BP=\sqrt{5^2-4^2}=3\left(cm\right)\)
x y O I A B
gt : \(\widehat{xOy}< 90^{\text{o}}\), \(\widehat{xOI}=\widehat{Ioy}\), \(IA\perp Ox\), \(IB\perp Oy\).
kl : .
c/m : Xét AIO và BIO , có :
\(OI\) là cạnh chung
\(\widehat{xOI}=\widehat{IOy}\left(gt\right)\)
\(\Rightarrow\) AIO BIO (ch - gn)
\(\Rightarrow IA=IB\) (2 cạnh tương ứng) (đpcm)
< Em tự vẽ hình nhé! >
+, Xét tam giác IAO và tam giác IBO có :
IO chung
Góc AOI = Góc IOB ( vì OI là tia phân giác của góc xOy)
Góc IAO = Góc IOB = 90 độ (gt)
=> Tam giác IAO = tam giác IBO ( ch-gn)
=> IA = IB ( 2 cạnh tương ứng )
a) Ta thấy ngay (Cạnh huyền - góc nhọn)
b) Do
Mà AB = AC nên AO là đường trung trực đoạn thẳng BC hay AO vuông góc BC.
c) Do OB = OC nên OB = 5cm.
Áp dụng định lý Pi-ta-go cho tam giác vuông BEO ta có:
EC = EO + OC = 8cm
Vậy thì áp dụng định lý Pi-ta-go cho tam giác vuông BEC ta có:
d) Ta thấy ngay hay tam giác ABC là tam giác đều.
5.
a) Xét \(\Delta ABH\) và \(\Delta ACH\) có :
AB = AC ( do \(\Delta ABC\) cân tại A )
AH : cạnh chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
do đó \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\Rightarrow\) HB = HC ( 2 cạnh tương ứng )
b) Có HB = HC ( chứng minh trên )
\(\Rightarrow\) HB + HC = BC
HB + HC = 8cm
2HB = 8cm
\(\Rightarrow\) HB = 4cm
Áp dụng định lý Pytago cho \(\Delta AHB\) có \(\widehat{AHB}=90^o\)
\(AB^2=BH^2+AH^2\)
\(5^2=4^2+AH^2\)
25 = 16 + \(AH^2\)
\(AH^2\) = 25 - 16
\(AH^2\) = 9
\(\rightarrow AH=3cm\)
c) Xét \(\Delta BDH\) và \(\Delta ECH\) có :
\(\widehat{B}=\widehat{C}\) ( do \(\Delta ABC\) cân tại A )
\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)
BH = HC ( chứng minh câu a )
do đó \(\Delta BDH=\Delta ECH\) ( cạnh huyền góc nhọn )
\(\Rightarrow\) HD = HE ( 2 cạnh tương ứng )
nên \(\Delta HDE\) cân tại H ( dấu hiệu nhận biết \(\Delta\) cân )
P/s : lúc nào rảnh làm tiếp nhé bây h muộn r , lm đại 1 bài dễ nhất trc ( xử lí lũ kia sau ) .
P/s: sửa I là điểm chứ không phải là trung điểm
Hình tự vẽ :<
a) Xét \(\Delta\)AOI và \(\Delta\)BOI có:
IAO=IBO (=90o)
IO: chung
AOI=BOI (OI: p/g AOB)
\(\Rightarrow\Delta\)AOI=\(\Delta\)BOI (ch-gn)
\(\Rightarrow\)IA=IB (2 cạnh tương ứng)
b) Xét \(\Delta\)KOB và \(\Delta\)MOA có:
KBO=MAO (\(\Delta\)AOI=\(\Delta\)BOI)
OB=OA ( \(\Delta\)AOI=\(\Delta\)BOI)
O: chung
\(\Rightarrow\)\(\Delta\)KOB=\(\Delta\)MOA (g.c.g)
\(\Rightarrow\)OK=OM (2 cạnh tương ứng)
Ta có:
\(\hept{\begin{cases}OA+AK=OK\\OB+BM=OM\end{cases}}\)mà \(\hept{\begin{cases}OA=OB\\OK=OM\end{cases}}\)
\(\Rightarrow\)AK=BM
c) Ta có: OM=OK (cmt)
\(\Rightarrow\)\(\Delta\)KOM cân tại O
\(\Rightarrow\)OMK=OKM
Xét \(\Delta\)OCM và \(\Delta\)OCK có:
OMK=OKM (cmy)
OC: chung
COM=COK (OC: p/g MOK)
\(\Rightarrow\)\(\Delta\)OCM=\(\Delta\)OCK (g.c.g)
\(\Rightarrow\)OCM=OCK (2 góc tương ứng)
Mà OCM+OCK=180o (kề bù)
\(\Rightarrow\)OCM=OCK=180o:2=90o
\(\Rightarrow\)OC \(\perp\) MK
MÌNH GHI VẮN TẮT THÔI NHA, BẠN HÃY TỰ TRÌNH BÀY ĐẦY ĐỦ NHA
a.\(\Delta AOC=\Delta BOD\)(cạnh huyền-góc nhọn)
vì OA=OB; góc O chung; OCA=ADB=900
b.Ta có: OB=OA
=>OB-OC=OA-AD(VÌ OC=0D)
=>CB=DA
\(\Delta DAI=\Delta CBI\)(G.C.G)
VÌ D=C=900 ; AD=BC; DAI=CBI(DAI+DIA=90; CIB+CBI=90=>DAI+CBI vì DIA=CIB)
=>IA=IB
=>IAB cân
c.Trong \(\Delta CIB\) có IB>IC vì IB là cạnh huyền mà IB=IA
=>IA>IC
d. (ko hợp lí)
Chúc bn học giỏi k mình nhé
Cho góc nhọn xOy; trên tia Ox lấy điểm A $\left(A\ne O\right)$(A≠O) trên tia Oy lấy điểm N $\left(B\ne O\right)$(B≠O) sao cho OA=OB; Kẻ AC=Oy $\left(C\in Oy\right)$(C∈Oy) ; BD vuông góc với Ox $\left(D\in Ox\right)$(D∈Ox) ; I là giao điểm của AC và BD.a) c/m: $\Delta AOC=\Delta BOD$ΔAOC=ΔBODb) c/m: $\Delta AIB$ΔAIB cânc) So sánh IC và IAd) c/m: góc IAB=1/2 A ( Giải nhanh lên giúp mình với mai mình phải nộp rồi! Ai Làm nhanh nhất và đúng mình k cho 3 cái)
Cho góc nhọn xOy; trên tia Ox lấy điểm A $\left(A\ne O\right)$(A≠O) trên tia Oy lấy điểm N $\left(B\ne O\right)$(B≠O) sao cho OA=OB; Kẻ AC=Oy $\left(C\in Oy\right)$(C∈Oy) ; BD vuông góc với Ox $\left(D\in Ox\right)$(D∈Ox) ; I là giao điểm của AC và BD.a) c/m: $\Delta AOC=\Delta BOD$ΔAOC=ΔBODb) c/m: $\Delta AIB$ΔAIB cânc) So sánh IC và IAd) c/m: góc IAB=1/2 A ( Giải nhanh lên giúp mình với mai mình phải nộp rồi! Ai Làm nhanh nhất và đúng mình k cho 3 cái)
do anh thien toi dang mk ggiai cho bay gio di hoc vo roi
O M N P Q A B x y 5 4 ?
a) Xét \(\Delta OMA,\Delta ONA\) có:
\(\widehat{MOA}=\widehat{NOA}\) (OA là tia phân giác của \(\widehat{O}\))
\(OA:Chung\)
\(\widehat{OMA}=\widehat{ONA}\left(=90^{^O}\right)\)
=> \(\Delta OMA=\Delta ONA\) (cạnh huyền - góc nhọn)
=> OM = ON (2 cạnh tương ứng)
Do đó : \(\Delta OMN\) cân tại O
=> đpcm
b) Xét \(\Delta MAP,\Delta NAQ\) có :
\(\widehat{AMP}=\widehat{ANQ}\left(=90^o\right)\)
\(MA=AN\) (\(\Delta OMA=\Delta ONA\)- câu a)
\(\widehat{MAP}=\widehat{NAQ}\) (đối đỉnh)
=> \(\Delta MAP=\Delta NAQ\left(g.c.g\right)\)
=> \(AP=AQ\) (2 cạnh tương ứng)
c) Ta có : \(\left\{{}\begin{matrix}OM=ON\left(\Delta OAM=\Delta OAN\right)\\MP=NQ\left(\Delta MAP=\Delta NAQ\right)\end{matrix}\right.\)
Lại có : \(\left\{{}\begin{matrix}M\in Ox\\N\in Oy\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}OP=OM+MP\\OQ=ON+NQ\end{matrix}\right.\)
Suy ra : \(OP=OQ\left(OM+MP=ON+NQ\right)\)
Xét \(\Delta OBP,\Delta OBQ\) có :
\(OP=OQ\left(cmt\right)\)
\(\widehat{POB}=\widehat{QOB}\) (cmt)
\(OB:chung\)
=> \(\Delta OBP=\Delta OBQ\left(c.g.c\right)\)
=> \(\widehat{OBP}=\widehat{OBQ}\) (2 góc tương ứng)
Mà : \(\widehat{OBP}+\widehat{OBQ}=180^o\left(kềbù\right)\)
=> \(\widehat{OBP}=\widehat{OBQ}=90^o\)
Xét \(\Delta OBP\) vuông tại B (\(\widehat{OBP}=90^o\)) có:
\(BP^2=OP^2-OB^2\) (Định lí PITAGO)
=> \(BP^2=5^2-4^2=9\)
=> \(BP=\sqrt{9}=3\left(cm\right)\)