\(\widehat{xOx}\) nhọn, trên tia Ox lấy điểm A , trên tia Oy lấy điểm B sao cho OA=0B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAOC vuông tại A và ΔOBD vuông tại B có

OA=OB(gt)

\(\widehat{O}\) là góc chung

Do đó: ΔAOC=ΔOBD(cạnh góc vuông-góc nhọn kề)

b) Xét ΔOIB vuông tại B và ΔOIA vuông tại A có

OI là cạnh chung

OB=OA(gt)

Do đó: ΔOIB=ΔOIA(cạnh huyền-cạnh góc vuông)

⇒IB=IA(hai cạnh tương ứng)

Ta có: IB+ID=BD(do B,I,D thẳng hàng)

IA+IC=AC(do A,I,C thẳng hàng)

mà IB=IA(cmt)

và BD=AC(do ΔAOC=ΔOBD)

nên ID=IC

Xét ΔIDC có ID=IC(cmt)

nên ΔIDC cân tại I(định nghĩa tam giác cân)

c) Ta có: ΔOIB=ΔOIA(cmt)

nên \(\widehat{BIO}=\widehat{AIO}\)(hai góc tương ứng)

mà tia IO nằm giữa hai tia IA,IB

nên IO là tia phân giác của \(\widehat{AIB}\)(đpcm)

d) Ta có: ΔAOC=ΔOBD(cmt)

⇒OC=OD(hai cạnh tương ứng)

Xét ΔOCD có OC=OD(cmt)

nên ΔOCD cân tại O(định nghĩa tam giác cân)

mà OK là đường cao ứng với cạnh CD(IK⊥DC,O∈IK)

nên OK là đường phân giác ứng với cạnh CD

⇒OK là tia phân giác của \(\widehat{COD}\)

hay OK là tia phân giác của \(\widehat{AOB}\)

Ta có: ΔOIB=ΔOIA(cmt)

\(\widehat{IOB}=\widehat{IOA}\)(hai góc tương ứng)

mà tia OI nằm giữa hai tia OA,OB

nên OI là tia phân giác của \(\widehat{AOB}\)

Ta có: OI là tia phân giác của \(\widehat{AOB}\)(cmt)

OK là tia phân giác của \(\widehat{AOB}\)(cmt)

mà OI và OK có điểm chung là O

nên O,I,K thẳng hàng

8 tháng 12 2021

 

a) Xét ΔAOC vuông tại A và ΔOBD vuông tại B có

OA=OB(gt)

∠Olà góc chung

⇒ΔAOC=ΔOBD(cạnh góc vuông-góc nhọn kề)

b) Xét ΔOIB vuông tại B và ΔOIA vuông tại A có

OI là cạnh chung

OB=OA(gt)

⇒ ΔOIB=ΔOIA(cạnh huyền-cạnh góc vuông)

⇒IB=IA(hai cạnh tương ứng)

Ta có: IB+ID=BD(do B,I,D thẳng hàng)

IA+IC=AC(do A,I,C thẳng hàng)

MàIB=IA(cmt)

và BD=AC(do ΔAOC=ΔOBD)

⇒ ID=IC

Xét ΔIDC có ID=IC(cmt)

⇒ ΔIDC cân tại I

c) Ta có: ΔOIB=ΔOIA(cmt)

⇒∠BIO=∠AIO(hai góc tương ứng)

Mà tia IO nằm giữa hai tia IA,IB

IO là tia phân giác của∠AIB

 

a: Xét ΔOAC vuông tại A và ΔOBD vuông tại B có

OA=OB

góc AOC chung

Do đó: ΔOAC=ΔOBD

b: Xét ΔIAD vuông tại A và ΔIBC vuông tại B có

AD=BC

\(\widehat{IDA}=\widehat{ICB}\)

Do đo: ΔIAD=ΔIBC

Suy ra: ID=IC

hay ΔIDC cân tại I

c: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có

OI chung

OA=OB

Do đó: ΔOAI=ΔOBI

Suy ra: \(\widehat{AOI}=\widehat{BOI}\)

hay OI là phân giác của góc AOB

29 tháng 3 2020

Tham khảo:

15 tháng 1 2018

mik biet moi i a) và b) thui

a) xét tam giác AOM và tam giác BOM ta có :                       

OA = OB ( GIẢ THIẾT )

góc AOM = góc MOB

OM là cạnh chung

=> tam giác AOM = tam giác BOM

b) từ a)  => am = bm

25 tháng 12 2018

ai biết câu c ko

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.a)CM: ΔAOM=ΔBOMb)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BDc) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // OtBài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường...
Đọc tiếp

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.

a)CM: ΔAOM=ΔBOM

b)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BD

c) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // Ot

Bài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M, qua B vuông góc với Oy cắt Ox tại N. GọiH là giao điểm của AM và BM,I là trung điểm của MN.CMR:

a) ON=OM và AN=BM

b)Tia OH là tia phân giác góc xOy

c) Ba tia điểm O,H,I thẳng hàng

Bài3: Cho ΔABC vuông góc tại A.Gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MD=MB

a) CM: AD=BC

b) CM: CD vuông góc với AC

c) Đường thẳng qua B song song với AC cắt tia DC tại N. CM:Δ ABM= ΔCNM

1

Bài 3: 

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

b: Ta có: ABCD là hình bình hành

nên CD//AB

mà AB⊥AC

nên CD⊥AC

c: Xét tứ giác ABNC có 

AB//NC

BN//AC

Do đó: ABNC là hình bình hành

Suy ra: AB=CN

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=NC

Do đó: ΔBAM=ΔNCM