\(\widehat{xay}\).trên tia ã lấy 2 điểm b và c sao cho ab=8cm,ac=15cm.trên tia...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

A B C x D E y

Xét  tam giác \(ABE\) \(\&ADC\)

\(BAE=ADC\)(góc chung)

\(\frac{AB}{CD}=\frac{8}{10}=\frac{4}{5};\frac{AE}{AC}=\frac{12}{15}=\frac{4}{5}\)

\(\Rightarrow tamgiácABE~tamgiacADC\left(C.G.C\right)\)

b) Từ tam giác \(ABE\) \(~\)tam giác \(ADC\)\(\Rightarrow\frac{AB}{CD}=\frac{BE}{DC}\Rightarrow DC=\frac{AD\cdot BE}{AB}=\frac{10\cdot10}{8}=12,5\)

c) Từ tam giác \(ABE~\)tam giác \(ADC\left(cmt\right)\)

\(\Rightarrow\frac{S_{ABE}}{S_{ADC}}=\left(\frac{AB}{AD}\right)^2=\left(\frac{8}{10}\right)^2\left(\frac{4}{5}\right)^2=\frac{16}{25}\)

22 tháng 4 2020

chỉ mik dc ko

22 tháng 4 2020

a) xét \(\Delta\)AEF và \(\Delta\)ADC có:

\(\widehat{A}\)chung

\(\frac{AE}{AF}=\frac{3}{6}=\frac{1}{2};\frac{AD}{AC}=\frac{4}{8}=\frac{1}{2}\)

=> \(\frac{AE}{AF}=\frac{AD}{AC}\)

b) \(\Delta\)AEF đồng dạng \(\Delta\)ADC (cmt)

=> \(\widehat{DFI}=\widehat{ECI}\). Lại có: \(\widehat{DIF}=\widehat{EIC}\left(gt\right)\)

=> \(\Delta\)DIF đồng dạng với \(\Delta\)EIC (g.g)

=> \(\frac{S_{IDF}}{S_{IEC}}=\left(\frac{DF}{EC}\right)^2=\left(\frac{2}{5}\right)^2=\frac{4}{25}\)

17 tháng 5 2018

a. Xét \(\Delta ABE\)\(\Delta ADC\) có:

\(\widehat{A}\left(chung\right)\)

\(\dfrac{AB}{AD}=\dfrac{8}{10}=\dfrac{4}{5}va\dfrac{AE}{AC}=\dfrac{12}{15}=\dfrac{4}{5}\)

Do đó: \(\Delta ABE\infty\Delta ADC\left(c-g-c\right)\)

b. Vì \(\Delta ABE\infty\Delta ADC\left(cmt\right)\)

=> \(\dfrac{AB}{AD}=\dfrac{BE}{DC}\) (1)

hay AB.DC = AD.BE

c. Thay số vào (1) Ta có:

\(\dfrac{8}{10}=\dfrac{10}{DC}\)

=> DC = 12,5 cm

11 tháng 4 2020

a. Xét ΔABEΔABEΔADCΔADC có:

ˆA(chung)A^(chung)

ABAD=810=45vaAEAC=1215=45ABAD=810=45vaAEAC=1215=45

Do đó: ΔABE∞ΔADC(c−g−c)ΔABE∞ΔADC(c−g−c)

b. Vì ΔABE∞ΔADC(cmt)ΔABE∞ΔADC(cmt)

=> ABAD=BEDCABAD=BEDC (1)

hay AB.DC = AD.BE

c. Thay số vào (1) Ta có:

810=10DC810=10DC

=> DC = 12,5 cm

chúc bạn học tốt hihi

4 tháng 5 2016

nếu bạn muốn họ trả lời nhanh thì bạn tốt nhật ko nên bỏ chữ đâu nha

4 tháng 5 2016

là sao bạn k hiểu

16 tháng 5 2019

a) Xét \(\Delta EDC\)và \(\Delta BAC\)

có \(\widehat{EDC}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ACB}\)chung

nên \(\Delta EDC\)\(\Delta BAC\)(g - g)

\(\Rightarrow\frac{EC}{BC}=\frac{CD}{AC}\Rightarrow\frac{EC}{CD}=\frac{BC}{AC}\)

Xét \(\Delta BEC\)và \(\Delta ADC\)

có \(\frac{EC}{CD}=\frac{BC}{AC}\)

\(\widehat{ACB}\)chung

nên \(\Delta BEC\)\(\Delta ADC\)(c - g - c)

Xét \(\Delta AHD\)

ta có AH = HD suy ra \(\Delta AHD\)cân tại H

mà  \(\widehat{HAD}=90^0\)nên \(\Delta AHD\)vuông cân tại H

suy ra \(\widehat{ADH}=45^0\)

Gọi giao điểm của AD và BE là O

Xét \(\Delta AOE,\Delta BOD\)

có \(\widehat{OAE}=\widehat{OBD}\)(\(\Delta BEC\)\(\Delta ADC\))

\(\widehat{AOE}=\widehat{BOD}\)(đối đỉnh)

nên \(\Delta AOE\)\(\Delta BOD\)(g - g)

\(\Rightarrow\widehat{AEB}=\widehat{ADH}=45^0\)

Xét \(\Delta ABE\)vuông tại A

có \(\widehat{AEB}=45^0\)nên \(\Delta ABE\)vuông cân tại A

suy ra BE = 2\(\sqrt{AB}\)=\(2\sqrt{2}\)(cm)

b) Gọi giao điểm của AH và BE là I 

dễ chứng minh \(\Delta HBA\)\(\Delta ABC\)(g - g)

\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)

có AB = 2 cm, BE = \(2\sqrt{2}\left(cm\right)\)

\(\Rightarrow\frac{AB}{BE}=\frac{1}{\sqrt{2}}\Rightarrow\frac{AB^2}{BE^2}=\frac{1}{2}\Rightarrow\frac{BH\cdot BC}{BE^2}=\frac{1}{2}\)

\(\Rightarrow\frac{BH}{BE}\cdot\frac{BC}{BE}=\frac{1}{2}\Rightarrow\frac{BH}{BE}=\frac{1}{2}\cdot\frac{BE}{BC}\Rightarrow\frac{BH}{BE}=\frac{BM}{BC}\)

Xét \(\Delta BHM\)và \(\Delta BEC\)

có \(\frac{BH}{BE}=\frac{BM}{BC}\)

\(\widehat{EBC}\)chung

nên \(\Delta BHM\)\(\Delta BEC\)(c - g - c)

\(\Rightarrow\widehat{IMH}\left(\widehat{BMH}\right)=\widehat{BCE}\)

mà \(\widehat{BCE}=\widehat{IAB}\)(cùng phụ với góc \(\widehat{B}\))

\(\Rightarrow\widehat{IMH}=\widehat{IAB}\)

dễ cm \(\Delta IAB\)\(\Delta IMH\)(g - g)

\(\Rightarrow\widehat{AHM}\left(\widehat{IHM}\right)=\widehat{IBA}=45^0\)

c) có AK là phân giác \(\Delta ABC\)

nên \(\frac{BK}{KC}=\frac{AB}{AC}\Rightarrow\frac{BK}{KC+BK}=\frac{AB}{AB+AC}\Rightarrow\frac{BK}{BC}=\frac{AB}{AB+AC}\)(1)

dễ cm \(\Delta ABH\)\(\Delta CAH\)(g - g)

\(\Rightarrow\frac{AB}{AC}=\frac{AH}{HC}\Rightarrow\frac{AB}{AB+AC}=\frac{AH}{AH+HC}\Rightarrow\frac{AB}{AB+AC}=\frac{HD}{AH+HC}\)(2)

từ (1) và (2) suy ra

\(\frac{BK}{BC}=\frac{HD}{AH+HC}\)