K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2015

Ta có: góc A+ góc B= 90 độ + 90 độ = 180 độ \

Mà 2 góc này ở vị trí trong cùng phía

=> AD//BC

24 tháng 12 2021

a, Ta có :

EC // FD

\(EC=FD=\frac{4}{2}BC=\frac{1}{2}AD\)

=> ECDF là hình bình hành 

\(EF=AB=\frac{1}{2}BC\)

=> ECDF là hình thoi

b, \(\widehat{A} =60^o\)

\(\Rightarrow D=120^o\)

\(\Rightarrow\widehat{EDF}=120^o:2=60^o\)

Mà BE // AD

==> BEDA là hình thang cân 

c, Xét tam giác AFE : AF = EF --- > góc AFE

BEFA là hình thoi 

==> AE là tia phân giác của \(\widehat{BAE}\Rightarrow\widehat{EAF}=30^o\)  

Mà EDA = 60o

=> Trong tam giác EAD = 180o = \(\widehat{EAF}+\widehat{ADE}+\widehat{EAD}\)

                                                 \(=30^o+60^o+\widehat{EAD}\)

                                                 \(\Rightarrow\widehat{AED}=60^o\)    

31 tháng 10 2022

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

Xét ΔABD có 

E là trung điểm của AB

G là trung điểm của BD

Do đó: EG là đường trung bình của ΔABD

Suy ra: EG//AD và EG=AD/2(1)

Xét ΔADC có

H là trung điểm của AC

F là trung điểm của CD

Do đó: HF là đường trung bình của ΔADC

Suy ra: HF//AD và HF=AD/2(2)

Từ (1) và (2) suy ra EG//HF và EG=HF

Xét ΔABC có

E là trung điểm của AB

H là trung điểm của AC

Do đó: EH là đường trung bình của ΔABC

Suy ra: EH=BC/2=AD/2(3)

Từ (1) và (3) suy ra EG=EH

Xét tứ giác EHFG có 

EG//HF

EG=HF

Do đó: EHFG là hình bình hành

mà EG=EH

nên EHFG là hình thoi

12 tháng 12 2020

a) Ta có: \(AF=\dfrac{AD}{2}\)(F là trung điểm của AD)

\(BE=\dfrac{BC}{2}\)(E là trung điểm của BC)

mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)

nên AF=BE

Xét tứ giác AFEB có 

AF//BE(AD//BC, F∈AD, E∈BC)

AF=BE(cmt)

Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: \(AD=2\cdot AB\)(gt)

mà \(AD=2\cdot AF\)(F là trung điểm của AD)

nên AB=AF

Hình bình hành AFEB có AB=AF(cmt)

nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AE⊥BF(đpcm)

b) Ta có: AFEB là hình thoi(cmt)

nên AF=FE=EB=AB và \(\widehat{A}=\widehat{FEB}\)(Số đo của các cạnh và các góc trong hình thoi AFEB)

hay \(\widehat{FEB}=60^0\)

Xét ΔFEB có FE=EB(cmt)

nen ΔFEB cân tại E(Định nghĩa tam giác cân)

Xét ΔFEB cân tại E có \(\widehat{FEB}=60^0\)(cmt)

nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)

\(\widehat{BFE}=60^0\)(Số đo của một góc trong ΔFEB đều)

Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)

nên \(\widehat{A}=\widehat{DFE}\)(hai góc đồng vị)

hay \(\widehat{DFE}=60^0\)

Ta có: tia FE nằm giữa hai tia FB,FD

nên \(\widehat{DFB}=\widehat{DFE}+\widehat{BFE}\)

\(\Leftrightarrow\widehat{DFB}=60^0+60^0=120^0\)(1)

Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)

nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía bù nhau)

hay \(\widehat{D}=180^0-60^0=120^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DFB}=\widehat{D}\)

Xét tứ giác BFDC có 

FD//BC(AD//BC, F∈AD)

nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)

Hình thang BFDC có \(\widehat{DFB}=\widehat{D}\)(cmt)

nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

a: Xét tứ giác AFEB có 

AF//BE

AF=EB

Do đó: AFEB là hình bình hành

mà AF=AB

nên AFEB là hình thoi

=>AE\(\perp\)FB

c: Xét tứ giác BMCD có 

BM//CD

BM=CD

Do đó: BMCD là hình bình hành

d: Ta có: BMCD là hình bình hành

nên BC và MD cắt nhau tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của MD

hay M,E,D thẳng hàng