Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10
b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6
c2 = a2 – b2 = 25 – 9 = 16 => c = 4
Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)
Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).
tập xác định của hàm số đã cho là:
D = { x ∈ R/x2 + 2x – 3 ≠ 0}
x2 + 2x – 3 = 0 ⇔ x = -3 hoặc x = 1
Vậy D = R {- 3; 1}.
) Ta có = +
Nếu coi hình bình hành ABCd có = = và = = thì là độ dài đường chéo AC và = AB; = BC.
Ta lại có: AC = AB + BC
Đẳng thức xảy ra khi điểm B nằm giữa hai điểm A, C.
Vậy = + khi hai vectơ , cùng hướng.
b) Tương tự, là độ dài đường chéo AC
là độ dài đường chéo BD
= => AC = BD.
Hình bình hành ABCD có hai đường chéo bằng nhau nên nó là hình chữ nhật, ta có AD AB hay
Ta có sin2x + cos2x = 1 => sin2x = 1 – cos2x
Do đó P = 3sin2x + cos2x = 3(1 – cos2x) + cos2x
=> P = 3 – 2cos2x
Với cosx = => cos2x = => P= 3 – =
\(\dfrac{12+y}{300+y}.100=10\)
\(\Leftrightarrow\dfrac{12+y}{300+y}=\dfrac{1}{10}\)
\(\Leftrightarrow10\left(12+y\right)=300+y\)
\(\Leftrightarrow120+10y=300+y\)
\(\Leftrightarrow120+10y-y=300\)
\(\Leftrightarrow120+9y=300\)
\(\Leftrightarrow9y=180\)
\(\Leftrightarrow y=20\)
Vậy y=20
Qua M kẻ các đường thẳng song song với các cạnh của tam giác
A1B1 // AB; A2C2 // AC; B2C1 // BC.
Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1C2 của tam giác MB1C2
Ta có 2 = +
Tương tự: 2 = +
2 = +
=> 2( ++) = (+) + ( + ) + (+)
Tứ giác là hình bình hành nên
+ =
Tương tự: + =
+ =
=> 2( ++) = ++
vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên
++ = 3.
Cuối cùng ta có:
2( ++) = 3;
=> ++ =
Công thức có nghĩa với x ∈ R sao cho 2x + 1 ≠ 0.
Vậy tập xác định của hàm số là:
D = { x ∈ R/2x + 1 ≠ 0} =