Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{KAC}+\widehat{KCA}=\dfrac{180^0-72^0}{2}=54^0\)
nên \(\widehat{AKC}=126^0\)
c: Vì Am và AK là hai tia phân giác của hai góc kề bù
nên Am⊥AK
Vì Cn và CK là hai tia phân giác của hai góc kề bù
nên Cn⊥CK
e: \(\widehat{KAC}+\widehat{KCA}=\dfrac{180^0-x}{2}\)
\(\Leftrightarrow\widehat{AKC}=\dfrac{360^0-180^0+x}{2}=\dfrac{180^0+x}{2}\)
Em tham khảo:Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
A B C J K H I
a/ Xét tg BIC có
\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\dfrac{\widehat{B}}{2}-\dfrac{\widehat{C}}{2}=\)
\(=180^o-\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=180^o-\left[\dfrac{180^o-\widehat{A}}{2}\right]=90^o+\dfrac{\widehat{A}}{2}\left(dpcm\right)\)
b/ Để c/m câu này ta chứng minh bài toán phụ: " Hai đường phân giác ngoài của 2 góc với đường phân giác trong của góc còn lại đồng quy"
A B C J D E F
Có hai đường phân giác của các góc ngoài của góc B và góc C cắt nhau tại J.
Từ J dựng các đường vuông góc với AB; AC; BC cắt 3 cạnh trên lần lượt tại D; E; F
Vì J thuộc đường phân giác của \(\widehat{DBC}\) nên JD=JF
Vì J thuộc đường phân giác của \(\widehat{ECB}\) nên JE=JF
(Mọi điểm thuộc đường phân giác của một góc thì cách đều hai cạnh của góc)
=> JD=JE
Xét tg vuông ADJ và tg vuông AEJ có
ẠJ chung; JD=JE (cmt) => tg ADJ = tg AEJ (hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{DAJ}=\widehat{EAJ}\) => Ạ là phân giác của góc \(\widehat{BAC}\)
Áp dụng vào bài toán:
Nối AJ => AJ là phân giác của \(\widehat{BAC}\) => AJ phải đi qua I (Trong tg 3 đường phân giác trong đồng quy) => A; I; J thẳng hàng
c/ Vì J; H; K bình đẳng nên B; I; K thẳng hàng và C; I; H thẳng hàng
=> AJ; BK; CH đồng quy tại I
góc PQM+góc PNM
=góc AQB+góc DNC
=180 độ-1/2(góc A+góc B)+180 độ-1/2(góc C+góc D)
=360 độ-1/2*360=180 độ
=>góc NMP+góc NPQ=180 độ