K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

a) A B C D E F G H

Ta nối E và G ; H và F lại với nhau tạo thành hai đường chéo của tứ giác HEFG.

Vì ABCD là hình nhữ nhật nên ABCD là hình thang đặc biệt.

Có: EG là đường trung bình của của hình chữ nhật ABCD ( AE=EB; DG=GC )

=> EG//AD (1)

HF là đường trung bình của hình chữ nhật ABCD ( AH=HD; BF=FC )

=> HF//AB (2)

Theo bài ra: AB _|_ AD ( Tứ giác ABCD là hình chữ nhật )

Từ (1) và (2) suy ra: HF_|_ EG

Tứ giác có hai đường chéo vuông góc với nhau là hình thoi nên HEFG là hình thoi.

Bạn có thể chứng minh theo trục đối xứng.

b) A B C D E F G H I

Gọi I là giao điểm của hai AC và BD (1)

Ta có: AC và BD là hai đường chéo của hình chữ nhật ABCD

=> AI = IC và BI = ID

Xét tam giác ABC có: AE=EB và AI = IC

=> EI là đường trung bình của tam giác ABC

=> EG cắt AC tại I (2)

Xét tam giác ABD có AH=HD và DI=IB

=> HI là đường trung bình của tam giác ABD

=> HF cắt BD tại I (3)

Từ (1),(2),(3) suy ra EG cắt HF tại I (4)

Từ (1),(2),(3),(4) suy ra EG,HF,AC,BD đồng quy tại I

12 tháng 11 2016

Sao cái hình để có phân nữa z

30 tháng 3 2019

Các dạng toán vá» hình chữ nhật - Toán lá»p 8-2

a. Ta có

\displaystyle OE+\text{OF+OG+OH=}\frac{\text{1}}{\text{2}}(AB+BC+CD+DA)=\frac{1}{2}{{P}_{ABCD}}

b. Có \displaystyle \left\{ \begin{array}{l}\text{EF//GH}\\\text{EF=G}\end{array} \right.\Rightarrow \diamond \text{EFGH} là hình bình hành ( dấu hiệu nhận biết )
Mặt khác \displaystyle \left\{ \begin{array}{l}AC\bot BD\\AC//\text{EF}\end{array} \right.\Rightarrow \left\{ \begin{array}{l}\text{EF}\bot \text{BD}\\\text{BD//EH}\end{array} \right.\Rightarrow EH\bot \text{EF}\Rightarrow \diamond \text{EFGH} là hình chữ nhật