K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

undefined

24 tháng 10 2016

câu 2 ( các kí hiệu vecto khi lm bài thỳ b tự viết nhé mk k viết kí hiệu để trả lời cho nhanh hỳ hỳ )

OA+ OB + OC = OA'+ OB' + OC'

<=> OA - OA' + OB - OB' + OC - OC' = 0

<=> A'A + B'B + C'C = 0

<=> 2 ( BA + CB + AC ) = 0

<=> 2 ( CB + BA + AC ) = 0

<=> 2 ( CA + AC ) = 0

<=> 0 = 0 ( luôn đúng )

 

 

24 tháng 10 2016

câu 1 ( các kí hiệu vecto b cx tự viết nhá )

VT = OD + OC = OA + AD + OB + BC = OA + OB + AD + BC = BO + OB + AD + BC = 0 + AD + BC = AD + BC = VP ( đpcm)

12 tháng 5 2017

TenAnh1 TenAnh1 A = (-4, -6.26) A = (-4, -6.26) A = (-4, -6.26) B = (11.36, -6.26) B = (11.36, -6.26) B = (11.36, -6.26) C = (-4.1, -6.64) C = (-4.1, -6.64) C = (-4.1, -6.64) D = (11.26, -6.64) D = (11.26, -6.64) D = (11.26, -6.64) E = (-4.34, -6.06) E = (-4.34, -6.06) E = (-4.34, -6.06) F = (11.02, -6.06) F = (11.02, -6.06) F = (11.02, -6.06)
\(BH\perp AC\). (1)
\(\widehat{ADC}=90^o\) (góc nội tiếp chắn nửa đường tròn) vì vậy\(AC\perp DC\). (2)
Từ (1) và (2) suy ra BH//DC. (3)
Tương tự HC//BD (vì cùng vuông góc với AB). (4)
Từ (3);(4) suy ra tứ giác HCDB là hình bình hành.
b) Do O là trung điểm của AD nên \(\overrightarrow{HA}+\overrightarrow{HD}=2\overrightarrow{HO}\).
Do M là trung điểm của BC nên \(\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HM}=\overrightarrow{HD}\).
Vì vậy \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HA}+\overrightarrow{HD}=2\overrightarrow{HO}\).
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OH}+\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}\)
\(=3\overrightarrow{HO}+2\overrightarrow{HO}=2\left(\overrightarrow{HO}+\overrightarrow{OH}\right)+\overrightarrow{HO}\)
\(=2.\overrightarrow{0}+\overrightarrow{HO}=\overrightarrow{HO}\).
c) Ta có:
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)\(=3\overrightarrow{OG}\) (theo tính chất trọng tâm tam giác). (5)
Mặt khác theo câu b)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\). (6)
Theo (5) và (6) ta có: \(\overrightarrow{OH}=3\overrightarrow{OG}\).
Suy ra ba điểm O, H, G thẳng hàng ( đường thẳng Ơ-le).

17 tháng 5 2017

A B C D M N Q P
a)
MN là đường trung bình của tam giác ABC nên \(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AC}\).
QP là đường trung bình của tam giác ABC nên \(\overrightarrow{QP}=\dfrac{1}{2}\overrightarrow{AC}\).
Vậy \(\overrightarrow{MN}=\overrightarrow{QP}\).
b) Giả sử:
\(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}\Leftrightarrow\overrightarrow{MP}-\overrightarrow{MN}-\overrightarrow{MQ}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MP}+\overrightarrow{NM}+\overrightarrow{QM}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{QM}+\overrightarrow{MP}\right)+\overrightarrow{NM}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}+\overrightarrow{NM}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}-\overrightarrow{MN}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}-\overrightarrow{QP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) ( Điều giả sử đúng).
Vậy \(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}.\)

7 tháng 5 2018

1). Gọi S điểm đối xứng với P qua M.Theo tính chất đối xứng của hình thang cân dễ thấy tứ giác ABSP cũng là hình thang cân.

Ta lại có    Q P S ^ = Q A B ^ = Q R B ^  .

Từ đó có E P Q ^ = E R P ^ ⇒ Δ E R P ∽ Δ E P Q  (g – g),

nên E Q P ^ = E P R ^ = B P S ^ = A S E ^ , suy ra tứ giác AEQS nội tiếp.

Do đó P A . P Q = P E . P S = P F 2 .2 P M = P F . P M , suy ra tứ giác A M Q F  nội tiếp.

Từ đó suy ra đường tròn ngoại tiếp tam giác △ A Q F  luôn đi qua M.

11 tháng 4 2020

Bài 1:

H1;H2 lần lượt là trực tâm tam giác OAB, OCD và \(\widehat{AOB}=\widehat{COD}\)(đối đỉnh)

=> \(\frac{OH_1}{OH_2}=\frac{AB}{CD}\)

Gọi M,N,K lần lượt là trung điểm của các đoạn thẳng AD, BC, BD

Vì G1;G2 lần lượt là trọng tâm của các tam giác OAD; OBC. Nên \(\frac{OG_1}{OM}=\frac{2}{3};\frac{OG_2}{ON}=\frac{2}{3}\)

\(\Delta\)OMN có: \(\frac{OG_1}{OM}=\frac{OG_2}{ON}\left(=\frac{2}{3}\right)\)=> G1G2 // MN và \(G_1G_2=\frac{2}{3}MN\)

\(OH_1\perp MK,OH_2\perp NK,MK=\frac{AB}{2},NK=\frac{CD}{2}\)

Do đó: \(\widehat{H_1OH_2}=\widehat{MKN},\frac{OH_1}{MK}=\frac{OH_2}{NK}\). Nên \(\Delta\)OH1H2 đồng dạng với \(\Delta\)KMN (cgc)

=> \(H_1H_2\perp MN\)Mà G1G2 // MN

Nên \(H_1H_2\perp G_1G_2\)=> \(S=\frac{1}{2}H_1H_2\cdot G_1G_2\)

Áp dụng BĐT Cosi cho 2 số dương ta có:
\(S=\frac{1}{2}H_1H_2\cdot G_1G_2=\frac{3G_1G_2\cdot H_1H_2}{6}\le\frac{\left(3G_1G_2+H_1H_2\right)^2}{24}\)

Dấu "=" <=> \(3G_1G_2=H_1H_2\Leftrightarrow OH_1=AB\)và \(OH_2=CD\)

\(\Leftrightarrow\widehat{AOB}=\widehat{COD}=45^o\)

11 tháng 4 2020

Bài 2: *có nhiều cách làm bài này, mỗi cách có 1 hình khác nhau, đang lỗi nên không vẽ được hình*

Cách 1: Ta có: \(\widehat{BAC}=90^o\)(Góc nội tiếp chắn nửa đường tròn)

Đặt BH=x, ta có HC=HB-BH=2R-x

\(\Delta\)ABC vuông tại A, AH là đường cao

=> AH2=BH.HC. Nên \(AH=\sqrt{x\left(2R-x\right)}\)

Áp dụng BĐT Cosi cho 2 số dương, ta có: AH+BH=\(\sqrt{x\left(2R-x\right)+x}=\frac{1}{\sqrt{3+2\sqrt{2}}}\sqrt{x\left[\left(3+2\sqrt{2}\right)\left(2R-x\right)\right]}+x\)

\(\le\frac{1}{\sqrt{\left(\sqrt{2}+1\right)^2}}\cdot\frac{a+\left(3+2\sqrt{2}\right)\left(2R-x\right)}{2}+x\)\(=\frac{1}{\sqrt{2}+1}\left[\frac{x}{2}\left(\sqrt{2}+1\right)^2\cdot R-\frac{\left(\sqrt{2}+1\right)^2\cdot x}{2}\right]+x\)

\(=\frac{\sqrt{2}-1}{2}\cdot x+\left(\sqrt{2}+1\right)R-\frac{\sqrt{2}+1}{2}x+x=\left(\sqrt{2}+1\right)R\)

Ta có AB+AH \(\le\left(\sqrt{2}+1\right)R\)không đổi

Dấu "=" xảy ra <=> \(x=\left(3+2\sqrt{2}\right)\left(2R-x\right)\)

\(\Leftrightarrow x=\frac{2+\sqrt{2}}{2}R\)

\(\Leftrightarrow\widehat{AOC}=45^o\)

Cách 2: Gọi M là điểm trên nửa đường tròn (O) sao cho \(\widehat{COM}=45^o\) và gọi N là giao của nửa đường tròn (O) tại M với BC
Ta có: M,N cố định; \(\widehat{ONM}=45^o\), BN không đổi

Điểm A trên đường tròn (O) 

Do đó tia NA nằm giữa 2 tia NB và NM

\(\Rightarrow\widehat{ANH}\le\widehat{ONM}=45^o\). Mà \(\widehat{ANH}+\widehat{HAN}=90^o\), Nên \(\widehat{HAN}\ge45^o\)

=> \(\widehat{ANH}\le\widehat{HAN},\)\(\Delta\)AHN có: \(\widehat{ANH}\le\widehat{HAN}\Rightarrow AH\le HN\)

Do đó: AH+BH \(\le\)HN+BH=BN, không đổi

Dấu "=" xảy ra <=> A = M

Vậy khi A trên nửa đường tròn (O) sao cho \(\widehat{COA}=45^o\) thì AH+BH lớn nhất