\(\sqrt{\left(p-a\right)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Muốn chứng minh tứ giác ABCD là tứ giác nội tiếp ta cần chứng minh: \(\widehat{ABC}+\widehat{ADC}=180^o\)\(\Leftrightarrow\)
A B C D
\(\overrightarrow{BA}\left(-1;3\right);\overrightarrow{BC}\left(-2;-4\right)\)
\(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)\)\(=\dfrac{\left(-1\right).\left(-2\right)+3.\left(-4\right)}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{\left(-2\right)^2+\left(-4\right)^2}}=\dfrac{-\sqrt{2}}{2}\).
Suy ra \(\overrightarrow{ABC}=135^o\).
\(\overrightarrow{DA}\left(4;-2\right);\overrightarrow{DC}\left(3;-9\right)\)
\(cos\widehat{ADC}=\left(\overrightarrow{DA};\overrightarrow{DC}\right)=\dfrac{4.3+\left(-2\right).\left(-9\right)}{\sqrt{4^2+2^2}.\sqrt{\left(3\right)^2+\left(-3\right)^2}}=\dfrac{\sqrt{2}}{2}\)
Suy ra \(\widehat{ADC}=45^o\)
Vậy \(\widehat{ADC}+\widehat{ABC}=135^o+45^o=180^o\).
Vì vậy tứ giác ABCD nội tiếp.

21 tháng 7 2019
https://i.imgur.com/LbHpR0f.jpg
28 tháng 11 2017

câu b là áp dụng bất đẳng thức cô -si ko cần chứng minh

a,Áp dụng bất đẳng thức Cô-si cho 2 số dương a,\(\dfrac{1}{b}\)ta có

a+\(\dfrac{1}{b}\)>=\(2\sqrt{\dfrac{a}{b}}\)

chứng minh tương tự ta có

b+\(\dfrac{1}{c}\)>=2\(\sqrt{\dfrac{b}{c}}\)

c+\(\dfrac{1}{a}\)>=\(2\sqrt{\dfrac{c}{a}}\)

nhân chúng vs nhau ta đc cái cần phải chứng minh

18 tháng 5 2017

Muốn chứng minh tứ giác ABCD là hình thang cân ta cần chứng minh hai điều:
- AB//CD.
- AD = BC.
\(\overrightarrow{AB}\left(1;1\right);\overrightarrow{DC}\left(-3;-3\right)\)
Dễ thấy \(\overrightarrow{DC}=-3\overrightarrow{AB}\) nên hai véc tơ \(\overrightarrow{DC}\)\(\overrightarrow{AB}\) cùng phương.
Suy ra DC//AB. (1)
\(AD=\sqrt{\left(0-1\right)^2+\left(-2-1\right)^2}=\sqrt{10}\).
\(BC=\sqrt{\left(3-0\right)^2+\left(1-2\right)^2}=\sqrt{10}\).
Vậy AD = BC. (2)
Từ (1) và (2) suy ra tứ giác ABCD là hình thang cân.

30 tháng 3 2017

Ta có: = (1; 7); = (1; 7)

= => ABCD là hình bình hành (1)

ta lại có : AB2 = 50 => AB = 5 √2

AD2 = 50 => AD = 5 √2

AB = AD, kết hợp với (1) => ABCD là hình thoi (2)

Mặt khác = (1; 7); = (-7; 1)

1.7 + (-7).1 = 0 => (3)


Kết hợp (2) và (3) suy ra ABCD là hình vuông

16 tháng 5 2017

a) \(\left(a;b\right)\cap\left(c;d\right)=\varnothing\)

b) (a; c] \ (b; d) = [b; c)

c) (a; d) \ (b; c) = (a; b] \(\cup\) [c; d)

d) (b;d) \ (a; c) = [c; d)

2 tháng 8 2018

a) (a;b)∩(c;d)=∅(a;b)∩(c;d)=∅

b) (a;c]∩[b;d)=[b;c](a;c]∩[b;d)=[b;c]

c) (a;d)∖(b;c)=(a;b]∪[c;d)(a;d)∖(b;c)=(a;b]∪[c;d)

d) (b;d)∖(a;c)=[c;d)

24 tháng 10 2017

Áp dụng bđt AM - GM, ta có:

\(4\sqrt{3}S=4\sqrt{3}\times\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(=4\sqrt{3}\times\dfrac{\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}{4}\)

\(\le\sqrt{3\left(a+b+c\right)}\times\sqrt{\dfrac{\left(a+b-c+b+c-a+c+a-b\right)^3}{27}}\)

\(=\dfrac{\left(a+b+c\right)^2}{3}\)

\(=\dfrac{a^2+b^2+c^2+2ab+2bc+2ac}{3}\)

\(=\dfrac{3\left(a^2+b^2+c^2\right)-\left(a^2-2ab+b^2\right)-\left(a^2-2ac+c^2\right)-\left(b^2-2bc+c^2\right)}{3}\)

\(=a^2+b^2+c^2-\dfrac{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}{3}\)

Dấu "=" xảy ra khi a = b = c (\(\Delta ABC\) đều)

Làm linh tinh đấy -.- hổng chắc đâu Ọ v Ọ

29 tháng 10 2017

Còn một cách rất pá đạo nữa , không hiểu nổi lấy ý tưởng từ đâu luôn:

CM:\(a^2+b^2+c^2\ge4\sqrt{3}S\)

\(\Leftrightarrow a^2+b^2+c^2-4\sqrt{3}S\ge0\)

\(\Leftrightarrow a^2+b^2+a^2+b^2-2ab.\cos C-4\sqrt{3}.\dfrac{1}{2}.ab.\sin C\ge0\)( định lý cos + CT diện tích)

\(\Leftrightarrow2\left(a^2+b^2-2ab\right)+4ab-4ab.\dfrac{1}{2}.\cos C-4ab.\dfrac{\sqrt{3}}{2}.\sin C\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2+4ab\left(1-\cos\dfrac{\pi}{3}.\cos C-\sin\dfrac{\pi}{3}.\sin C\right)\ge0\)

( \(\cos\dfrac{\pi}{3}=\cos60=\dfrac{1}{2}\);\(\sin\dfrac{\pi}{3}=\sin60=\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow2\left(a-b\right)^2+4ab\left[1-\cos\left(\dfrac{\pi}{3}-C\right)\right]\ge0\)( luôn đúng vì \(-1\le\cos\alpha\le1\))

( \(\cos\left(x-y\right)=\cos x\cos y+\sin x\sin y\))

15 tháng 6 2018

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm