\(\frac{MA}{MD}=\frac{NB}{NC}=\frac{m}{n}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 10 2020

\(\left\{{}\begin{matrix}\overrightarrow{IJ}=\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\\\overrightarrow{IJ}=\overrightarrow{ID}+\overrightarrow{DC}+\overrightarrow{CJ}\end{matrix}\right.\)

Cộng vế với vế:

\(2\overrightarrow{IJ}=\left(\overrightarrow{IA}+\overrightarrow{ID}\right)+\left(\overrightarrow{BJ}+\overrightarrow{CJ}\right)+\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DC}\)

\(\Rightarrow\overrightarrow{IJ}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{DC}\)

b/ Đặt \(\frac{MA}{MB}=\frac{ND}{NC}=k\)

\(\left\{{}\begin{matrix}\overrightarrow{IP}=\overrightarrow{IA}+\overrightarrow{AM}+\overrightarrow{MP}\\\overrightarrow{IP}=\overrightarrow{ID}+\overrightarrow{DN}+\overrightarrow{NP}\end{matrix}\right.\)

\(\Rightarrow2\overrightarrow{IP}=\left(\overrightarrow{IA}+\overrightarrow{ID}\right)+\left(\overrightarrow{MP}+\overrightarrow{NP}\right)+\overrightarrow{AM}+\overrightarrow{DN}=\overrightarrow{AM}+\overrightarrow{DN}\)

\(\Rightarrow2\overrightarrow{IP}=k.\overrightarrow{AB}+k.\overrightarrow{DC}\)

\(\Rightarrow\overrightarrow{IP}=\frac{k}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)=\frac{k}{2}.\overrightarrow{IJ}\Rightarrow P;I;J\) thẳng hàng hay P thuộc IJ

NV
23 tháng 2 2020

\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\)

b/

\(2\left(\overrightarrow{JA}+\overrightarrow{AB}+\overrightarrow{DA}+\overrightarrow{AI}\right)=2\left(\overrightarrow{JB}+\overrightarrow{DI}\right)=2\left(\overrightarrow{JD}+\overrightarrow{DB}+\overrightarrow{DB}+\overrightarrow{BI}\right)\)

\(=2\left(2\overrightarrow{DB}+\overrightarrow{IC}+\overrightarrow{CJ}\right)=2\left(2\overrightarrow{DB}+\overrightarrow{IJ}\right)=2\left(2\overrightarrow{DB}+\frac{1}{2}\overrightarrow{BD}\right)=3\overrightarrow{DB}\)c/

\(\overrightarrow{AK}=\overrightarrow{AB}+\overrightarrow{BK}=\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{6}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\)

\(\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}+\frac{1}{5}\overrightarrow{BC}=\frac{6}{5}\left(\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\right)=\frac{6}{5}\overrightarrow{AK}\)

\(\Rightarrow A;K;H\) thẳng hàng

9 tháng 8 2019

Nối AC, trên cạnh AC lấy điểm I sao cho \(\overrightarrow{AI}=\frac{2}{3}\overrightarrow{AC}\)

Xét tam giác ABC có: \(\frac{AM}{AB}=\frac{AI}{AC}=\frac{2}{3}\) \(\Rightarrow\overrightarrow{MI}=\frac{2}{3}\overrightarrow{BC}\)

Tương tự trong tam giác ACD có: \(\overrightarrow{IN}=\frac{2}{3}\overrightarrow{AD}\)

Ta có: \(\overrightarrow{MN}=\overrightarrow{MI}+\overrightarrow{IN}=\frac{2}{3}\left(\overrightarrow{BC}+\overrightarrow{AD}\right)\)

17 tháng 5 2017

A B C D M N Q P
a)
MN là đường trung bình của tam giác ABC nên \(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AC}\).
QP là đường trung bình của tam giác ABC nên \(\overrightarrow{QP}=\dfrac{1}{2}\overrightarrow{AC}\).
Vậy \(\overrightarrow{MN}=\overrightarrow{QP}\).
b) Giả sử:
\(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}\Leftrightarrow\overrightarrow{MP}-\overrightarrow{MN}-\overrightarrow{MQ}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MP}+\overrightarrow{NM}+\overrightarrow{QM}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{QM}+\overrightarrow{MP}\right)+\overrightarrow{NM}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}+\overrightarrow{NM}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}-\overrightarrow{MN}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}-\overrightarrow{QP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) ( Điều giả sử đúng).
Vậy \(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}.\)

8 tháng 11 2018

1. C

2. C

3. Sửa đề:

\(\overrightarrow{BD}+\overrightarrow{FE}=\overrightarrow{FD}+\overrightarrow{BE}\Leftrightarrow\overrightarrow{BD}-\overrightarrow{BE}=\overrightarrow{FD}-\overrightarrow{FE}\Leftrightarrow\overrightarrow{ED}=\overrightarrow{ED}\) (luôn đúng)

20 tháng 10 2019
https://i.imgur.com/WTLRce6.jpg