\(\frac{1}{2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

kẻ BD

ta có HA=HD
        EA=EB

=> HE là đg tb cuả tam giác ABD 

=> HE//BD; HE=1/2BD (1)

cmtt ta có GF là đg tb cuả tam giác CBD

=> GF//BD;GF=1/2BD (2)

Từ (1)và (2)

=>HE=GF(=1/2BD); HE//GF(//BD)

=> EFGH là hình bình hành

22 tháng 3 2020

uygd56tfru uu

11 tháng 11 2016

em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.

30 tháng 11 2023

a: AE+EB=AB

BF+FC=BC

CG+GD=CD

DH+HA=DA

mà AB=BC=CD=DA và AE=BF=CG=DH

nên EB=FC=GD=HA

Xét ΔEAH vuông tại A và ΔGCF vuông tại C có

EA=GC

AH=CF

Do đó: ΔEAH=ΔGCF

=>EH=GF

Xét ΔEBF vuông tại B và ΔGDH vuông tại D có

EB=GD

BF=DH

Do đó: ΔEBF=ΔGDH

=>EF=GH

Xét ΔEAH vuông tại A và ΔFBE vuông tại B có

EA=FB

AH=BE

Do đó: ΔEAH=ΔFBE

=>EH=EF và \(\widehat{AEH}=\widehat{BFE}\)

\(\widehat{AEH}+\widehat{HEF}+\widehat{BEF}=180^0\)

=>\(\widehat{BFE}+\widehat{BEF}+\widehat{HEF}=180^0\)

=>\(\widehat{HEF}+90^0=180^0\)

=>\(\widehat{HEF}=90^0\)

Xét tứ giác EHGF có

EF=GH

EH=GF

Do đó: EHGF là hình bình hành

Hình bình hành EHGF có EF=EH

nên EHGF là hình thoi

Hình thoi EHGF có \(\widehat{HEF}=90^0\)

nên EHGF là hình vuông

b: 

AH+HD=AD

=>AH+1=4

=>AH=3(cm)

ΔAEH vuông tại A

=>\(AE^2+AH^2=EH^2\)

=>\(EH^2=3^2+1^2=10\)

=>\(EH=\sqrt{10}\left(cm\right)\)

EHGF là hình vuông

=>\(S_{EHGF}=EH^2=10\left(cm^2\right)\)

31 tháng 12 2021

Chọn C

28 tháng 10 2017

a.Xét  ΔAME và  ΔCNF có
AM=CN(gt)
Góc MAE= góc NCF
AE=CF(gt)
Do đó ΔAME =  ΔCNF (c.g.c)
=> ME=NF(2 cạnh tương ứng)
Tương tự  ΔDMF=  ΔBNE(c.g.c)
=>MF=NE(2 cạnh tương ứng)
Tứ giác EMFN có
ME=NF(gt)
MF=NE(gt)
=>EMFN là hình bình hành

b) b/ Ta có: OE=OF (MENF là hình bình hành)
ON=OM(MENF là hình bình hành)
OD=OB (ABCD là hình bình hành)
OA=OC(ABCDlà hình bình hành)
=>AC, BD, MN, E giao nhau tại O
hay AC, BD, MN, EF đồng quy

cn lại bó tay

26 tháng 4 2019

A B D C F H E N M 2

\(a)\) Xét tam giác vuông ADM và tam giác vuông BAF có : 

\(AD=AB\) ( do ABCD là hình vuông ) 

\(\widehat{DAM}=\widehat{ABF}\) \(\left(=90^0-\widehat{BAF}\right)\)

Do đó : \(\Delta ADM=\Delta BAF\) ( cạnh góc vuông - góc nhọn ) 

Suy ra : \(DM=AF\) ( 2 cạnh tương ứng ) 

Mà \(AE=AF\)(GT) \(\Rightarrow\)\(DM=AE\)

Tứ giác AEMD có : \(DM=AE\)\(;\)\(DM//AE\) ( do \(AB//CD\) ) và có \(\widehat{ADC}=90^0\) nên AEMD là hình chữ nhật 

Vậy AEMD là hình chữ nhật 

\(b)\) Xét \(\Delta HAB\) và \(\Delta HFA\) có : 

\(\widehat{ABH}=\widehat{FAH}\) ( do \(\widehat{ABF}=\widehat{DAM}\) theo câu a )                              *(góc DÂM -_- haha)*

\(\widehat{BHA}=\widehat{AHF}\) \(\left(=90^0\right)\)

Do đó : \(\Delta HAB~\Delta HFA\) \(\left(g-g\right)\)

Suy ra : \(\frac{HB}{AH}=\frac{AB}{AF}\) ( các cặp cạnh tương ứng tỉ lệ ) 

Mà \(AB=BC;AF=AE\left(=DM\right)\) nên \(\frac{HB}{AH}=\frac{BC}{AE}\)

Lại có : \(\widehat{HAB}=90^0-\widehat{FAH}=90^0-\widehat{ABH}=\widehat{HBC}\)\(\Rightarrow\)\(\widehat{HAB}=\widehat{HBC}\)

Xét \(\Delta CBH\) và \(\Delta EAH\) có : 

\(\frac{HB}{AH}=\frac{BC}{AE}\)

\(\widehat{HAB}=\widehat{HBC}\)

Do đó : \(\Delta CBH~\Delta EAH\) \(\left(c-g-c\right)\)

Vậy \(\Delta CBH~\Delta EAH\)

\(c)\) \(\Delta ADM\) có \(CN//AD\) và cắt \(AM;DM\) nên theo hệ quả định lý Ta-let ta có : 

\(\frac{CN}{AD}=\frac{MN}{AM}\)\(\Leftrightarrow\)\(\frac{AD}{AM}=\frac{CN}{MN}\)\(\Leftrightarrow\)\(\frac{AD^2}{AM^2}=\frac{CN^2}{MN^2}\) \(\left(1\right)\)

\(\Delta ABN\) có \(CM//AB\) và cắt \(AN;BN\) nên theo hệ quả định lý Ta-let ta có : 

\(\frac{MN}{AN}=\frac{MC}{AB}\) hay \(\frac{MN}{AN}=\frac{MC}{AD}\)\(\Leftrightarrow\)\(\frac{AD}{AN}=\frac{MC}{MN}\)\(\Leftrightarrow\)\(\frac{AD^2}{AN^2}=\frac{MC^2}{MN^2}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{AD^2}{AM^2}+\frac{AD^2}{AN^2}=AD^2\left(\frac{1}{AM^2}+\frac{1}{AN^2}\right)=\frac{CN^2}{MN^2}+\frac{MC^2}{MN^2}=\frac{CN^2+MC^2}{MN^2}=\frac{MN^2}{MN^2}=1\)

\(\Rightarrow\)\(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AD^2}\) ( đpcm ) 

Vậy \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)

27 tháng 4 2022

ô kìa    *(góc DÂM -_- haha)*