K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

A B C D O

Theo bất đẳng thức tam giác ta có:

     OA + OB > AB

     OB + OC > BC

     OC + OD > CD 

     OD + OA > DA

Cộng 4 bđt trên theo vế ta được:

   2(OA + OB + OC + OD) > AB + BC + CD + DA

<=> (OA + OC) + (OB + OD) > (AB + BC + CD + DA)/2

\(\Leftrightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\)

14 tháng 6 2018

kang daniel

Hi hi jungkook

8 tháng 10 2020

Bổ đề: Cho tứ giác lồi bất kì thì tổng hai cạnh đối bé hơn tổng hai đường chéo (dễ chứng minh bằng cách sử dụng bất đẳng thức tam giác) (**)

Gọi E là giao điểm của AB và CD. Có thể xảy ra hai khả năng: ^B ≥ ^C hoặc ^B ≤ ^C

Giả sử ^B ≥ ^C (không mất tính tổng quát)

Trên tia đối của tia JA lấy K sao cho JA = JK

Dễ dàng có AD = BK  (tứ giác ABKD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành)

IJ là đường trung bình của ∆ACK nên CK = 2IJ

Áp dụng bổ đề (**) vào tứ giác BCKD, ta được: BD + CK < CD + BK 

Vậy BD + 2IJ < CD + AD (1)

Trong ∆ABC thì AC < AB + BC (2)

Cộng vế với vế (1) và (2), ta được: AC + BD + 2IJ < AB + BC + CD + DA

13 tháng 9 2020

Hi vọng bạn có kiến thức vững về BĐT tam giác nha, mấy bài này toàn BĐT tam giác thoi, mình ko chứng minh lại đâu.

Bài 3:

a) Xét tam giác AOB: \(OB>AB-AO\)

Xét tam giác DOC: \(OD>DC-OC\)

Cộng vế theo vế: \(OB+OD>AB+DC-\left(AO+OC\right)\Leftrightarrow BD>AB+DC-AC\Leftrightarrow BD+AC>AB+DC\)

b) Hoàn toàn tương tự với 2 tam giác AOD và BOC:

\(\Rightarrow\hept{\begin{cases}OD>AD-AO\\OB>BC-OC\end{cases}\Rightarrow BD>AD+BC-AC\Leftrightarrow BD+AC>AD+BC}\)

Bài 4: 

a) Từ câu 3 ta có \(\hept{\begin{cases}BD+AC>AB+CD\\BD+AC>AD+BC\end{cases}}\)Cộng vế theo vế:

\(\Rightarrow2\left(BD+AC\right)>AB+BC+CD+DA=P_{ABCD}\Rightarrow BD+AC>\frac{P_{ABCD}}{2}\)

b) Câu này thực ra không cần đề cho trước \(AC< \frac{P_{ABCD}}{2}\)đâu, vì đây là điều hiển nhiên mà

Xét 2 tam giác ABC và ADC: \(\hept{\begin{cases}AC< AB+BC\\AC< AD+DC\end{cases}}\)cộng vế theo vế:

\(\Rightarrow2AC< AB+BC+CD+DA=P_{ABCD}\Rightarrow AC< \frac{P_{ABCD}}{2}\)(1)

Hoàn toàn tương tự với 2 tam giác ABD và CBD \(\Rightarrow BD< \frac{P_{ABCD}}{2}\)(2)

Cộng (1) và (2) vế theo vế: \(AC+BD< P_{ABCD}\)

19 tháng 7 2016

A B C D O

Gọi O là giao điểm hai đường chéo AC và BD

  • Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được : 

\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)

\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)

  • Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được : 

\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)

Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)

hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)

19 tháng 7 2016

ve hin hra roi nghi cach cm 

27 tháng 9 2019

A B C D O

Theo bất đẳng thức tam giác ta có:

\(OA+OB>AB\)

\(OB+OC>BC\)

\(OC+OD>DC\)

\(OD+OA>AD\)

Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)

\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )

Theo bất đẳng thức tam giác ta có:

\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)

Cộng vế theo vế ta có:

\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)

\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )

Từ ( 1 ) ; ( 2 ) suy ra đpcm.

30 tháng 7 2023

a) Ta có:-

- M là trung điểm của AB

⇒  AM = MB.

- N là trung điểm của BC

⇒ BN = NC.

- P là trung điểm của CD

⇒ CP = PD.

- Q là trung điểm của DA

⇒ DQ = QA.

Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.

⇒ tứ giác MNPQ là hình bình hành.

Có:

- I là trung điểm của AC

⇒AI = IC.

- K là trung điểm của BD

⇒ BK = KD.

Do đó, ta có: AI = IC = BK = KD.

⇒ tứ giác INKQ là hình bình hành.

b)Gọi O là giao điểm của MP và NQ ta có:

MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).

⇒ MP song song với NQ.

do đó :O nằm trên MP và NQ.

  Gọi H là giao điểm của MI và NK ta có:

MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD). 

⇒ MI song song với NK.

  Do đó: H nằm trên cả MI và NK.

  Gọi G là giao điểm của OH và BD ta có:

OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên  MI và NK). 

⇒ OH song song với BD.

doo đó: G nằm trên OH và BD.

⇒ I, O, K thẳng hàng.(ĐPCM)

a: Xét ΔBAC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔDAC có DQ/DA=DP/DC

nên PQ//AC và PQ/AC=DQ/DA=1/2

=>PQ=1/2AC

=>MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔCAB có CI/CA=CN/CB=1/2

nên IN//AB và IN=1/2AB

Xét ΔDAB có DQ/DA=DK/DB=1/2

nên QK//AB và QK=1/2AB

=>IN//QK và IN=QK

=>INKQ là hình bình hành

b: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm của NQ

INKQ là hbh

=>IK cắt NQ tại trung điểm của mỗi đường

=>I,O,K thẳng hàng

27 tháng 7 2018

OK bạn, không biết bạn đã học đường trung bình chưa nhỉ

Theo t/c đường trung bình thì ML//AB, NL//DC nên có góc AEN = góc LMN ( đồng vị ) (1) và góc NFD = góc LNM (2) ( so le trong )

Cũng theo tc đường trung bình, NL = 1/2 DC và ML = 1/2AB mà AB = DC nên NL = LM nên góc LNM = góc LMN (3)

Từ (1), (2) và (3) ta suy ra góc AEN = góc NFD 

Còn nếu bạn chưa học đtb thì có thể tham khảo thêm tại đây : http://thuviendethi.com/chung-minh-dinh-ly-duong-trung-binh-trong-tam-giac-bang-kien-thuc-toan-lop-7-9033/

p/s sorry bạn nha mik trả lời hơi muộn do off lâu ngày nên không biết hihi ^.^

Cảm ơn bn nha tính chất đường tb mik vừa hc xong!!! Và mik cx chúc bn học thật tốt nha!!!