Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}AM=MB\\BN=NC\end{matrix}\right.\Rightarrow MN\text{ là đtb tg }ABC\Rightarrow MN\text{//}AC;MN=\dfrac{1}{2}AC\\ \left\{{}\begin{matrix}CP=PD\\DQ=QA\end{matrix}\right.\Rightarrow PQ\text{ là đtb tg }ACD\Rightarrow PQ\text{//}AC;PQ=\dfrac{1}{2}AC\\ \Rightarrow MN\text{//}PQ;MN=PQ\\ \Rightarrow MNPQ\text{ là hbh}\\ \left\{{}\begin{matrix}AM=MB\\CP=PD\end{matrix}\right.\Rightarrow MP\text{ là đtb tg }ABD\Rightarrow MP\text{//}BD\\ \text{Mà }AC\perp BD;MN\text{//}AC\\ \Rightarrow MP\perp MN\\ \text{Vậy }MNPQ\text{ là hcn}\)
a: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔDAC có DP/DC=DQ/DA
nên PQ//AC và PQ=AC/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
=>AC=BD
Xét ΔABD có : M là trung điểm AB (gt)
Q là trung điểm AD (gt)
=> MQ là đường trung bình của ΔABD
=> MQ // BD ; MQ = 1/2 BD (1)
Xét ΔCBD có : N là trung điểm BC (gt)
P là trung điểm CD (gt)
=> NP là đường trung bình của ΔCBD
=> NP // BD ; NP = 1/2 BD (2)
Từ (1) và (2) => MQ // NP; MQ = NP
Xét tứ giác MNPQ có : MQ // NP (cmt)
MQ = NP (cmt)
=> Tứ giác MNPQ là hình bình hành
Xét ΔBAC có M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình
=>MN//AC và MN=AC/2
Xét ΔDAC có
Q,P lần lượt là trung điểm của DA,DC
=>QP là đường trung bình
=>QP//AC và QP=AC/2
=>MN//PQ và MN=PQ
Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD
=>MQ vuông góc AC
mà MN//AC
nên MQ vuông góc MN
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
mà góc QMN=90 độ
nên MNPQ là hình chữ nhật
lười gõ =_=
link ây : https://olm.vn/hoi-dap/question/423397.html
tự làm nha
a) Tam giác ABC có :
MA = MB (gt)
NB = NC (gt)
nên MN là đường trung bình của tam giác, do đó MN // AC và MN = AC
Chứng minh tương tự : PQ // AC và PQ = AC
Suy ra MN // PQ và MN = PQ.
Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau => MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (1)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (2)
Từ (1) và (2) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
Answer:
Hình bạn tự vẽ.
a, Ta xét tam giác ABC
\(AM=MB=\frac{1}{2}AB\)
\(BN=NC=\frac{1}{2}BC\)
\(\Rightarrow MN\) là đường trung bình của tam giác ABC
\(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}BC\\MN//AC\end{cases}}\)
Chứng minh tương tự, ta được
\(NP;PQ;QM\) lần lượt là đường trung bình của tam giác BCD; tam giác ACD; tam giác ABD
Ý này nếu trình bày trong vở viết bạn gộp tất cả vào một cái ngoặc "và" nhé.
\(NP=\frac{1}{2}BD\)
\(NP//BD\)
\(PQ=\frac{1}{2}AC\)
\(PQ//AC\)
\(QM=\frac{1}{2}BD\)
\(QM//BD\)
Do vậy: \(\hept{\begin{cases}MN//PQ;MN=PQ\\NP//QM;NP=QM\end{cases}}\)
Vậy MNPQ là hình bình hành
b, MNPQ là hình chữ nhật
\(\Rightarrow\widehat{MNP}=90^o\)
\(\Rightarrow MN\perp NP\)
Mà \(\hept{\begin{cases}MN//AC\\NP//BD\end{cases}}\Rightarrow AC\perp BD\)
Vậy tứ giác ABCD có hai đường chéo vuông góc thì MNPQ là hình chữ nhật
cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.
a) tứ giác MNPQ là hình gì ? vì sao?
MN//BD; PQ//BD
NP//AC; QM//AC
=>MN//PQNP//QNMNPQ la hbbh
vì dễ quá nên không ai trả lời :D, bạn tự vẽ hình nhé
xét tam giác ADB có Q trung điểm AD, M trung điểm AB => MQ là đường trung bình tam giác ADB => MQ // BD và MQ = 1/2 BD.(1)
xét tam giác BCD có N trung điểm BC , P trung điểm CD => MP là đường trung bình tam giác BCD => NP//BD, NP= 1/2 BD(2)
(1)(2) => MQ // NP(vì cùng //BD) và MQ = NP (vì cùng = 1/2BD) => MQPN là hình bình hành