\(ABCD\) , gọi \(M,N,P,Q\) lần lượt là trung điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

Trên tia đối của PB lấy H sao cho BP = PH

ΔBPC và ΔHPD có:

BP = HP (cách vẽ)

\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)

PC = PD (gt)

Do đó, ΔBPC=ΔHPD(c.g.c)

=> BC = DH (2 cạnh t/ứng)

\(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD

ΔABH có: M là trung điểm của AB (gt)

P là trung điểm của BH (vì HP = BP)

Do đó MP là đường trung bình của ΔABH

\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH 

\(\Rightarrow2MP=AH\)

Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)

\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))

\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)

Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)

Do đó, \(AD+DH=AH\)

=> A,D,H thẳng hàng

Mà HD // BC (cmt) nên AD // BC

Tương tự: AB // CD

Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)

Do đó, ABCD là hình bình hành 

 

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
20 tháng 12 2022

a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2

Xét ΔCBD có CP/CD=CN/CB

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: AC vuông góc với BD

=>MN vuông góc với MQ

=>MNPQ là hình chữ nhật

23 tháng 11 2022

Bài 2;

Gọi M là trung điểm của HD

Xét ΔHDC có HM/HD=HI/HC

nên MI//DC và MI=DC/2

=>MI vuông góc với AD và MI=AB

Xét tứ giác ABIM có

AB//IM

AB=IM

Do đó: ABIM là hình bình hành

=>BI//AM

Xét ΔADI có

DH,IM là các đường cao

DH cắt IM tại M

Do đó: M là trực tâm

=>AM vuông góc với ID

=>IB vuông góc với DI

22 tháng 10 2019

Bài làm :

A B C D E F

a/ Xét \(\diamond EBFD\), có :

  • \(EB//DF\) (vì \(AB//CD\))
  • \(EB=\frac{1}{2}AB=\frac{1}{2}DC=FC\)

\(\Rightarrow \diamond EBFD\) là hình bình hành \(\Rightarrow DE=BF,\:EB//EF\)(1)

b/ Xét \(\diamond AECF\), có :

  • \(AE//FC\) (vì \(AB//CD\))
  • \(AE=\frac{1}{2}AB=\frac{1}{2}DC=FC\)

\(\Rightarrow\:\diamond AECF\) là hình bình hành \(\Rightarrow AF=EC, AF//EC\) (2)

Từ (1) và (2) \(\Rightarrow \diamond EMFN\) là hình bình hành.

12 tháng 10 2019

Hình vẽ đây : 

YAX34P43.jpg (578×558) 

Bài làm để Cô Quản Lý giúp đỡ nhá bn :) 

Hc tốt 

13 tháng 10 2019

A B C D E F H G I

a) Gọi I là trung điểm AF

=> AI = IF = FD = 1/3 AD = 1/3 BC = BE  

Mà AI//BE ( vì AD //BC)

=> ABEI là hình bình hành.

=> EI //AB (1) 

Xét tam giác AFH có: IE//AG (  theo (1) )  và I là trung điểm AF

=> E là trung điểm FG => EG = EF

Dễ dàng chứng minh được \(\Delta FHD=\Delta EGB\)=> HF = GE 

=> GE = HF = EF

b ) DF = 1/3 DA  => AF= 2/3 DA

   BE = 1/3 BC => EC = 2/3 BC 

Vì ABCD là hình bình hành => DA = BC => AF = EC

Mà AF// EC ( vì AD //BC )

=> AF//=EC 

=> AECF là hình bình hành.

A B C D M N

Trả lời 

Vì \(\hept{\begin{cases}AM=MB\\DC=NC\\MN=\frac{BC+AD}{2}\end{cases}}\Rightarrow MN\)  là đường trung bình của hình thang 

\(\Rightarrow ABCD\)là hình thang ( đpcm )

Thông cảm nha mọi người 

tôi sẽ vẽ lại hình cho nha

N A B C D M

Study well