Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a b c d m n p
xét 2 tam giác PAM . NMB
có AM=MB ( M là trung điểm )
MN=AP ( vì MN là đường trung bình )
góc NMP=NMP vì MN//AC
Suy ra PAM=NMP ( cgc)
3 tam giác còn lại làm tương tự
giả sử diện tích của mỗi tam giác = 2 cm
suy ra 4 tam giác PAM=NMP=MNP=CPN=2cm
=> S abc=2 x 4=8
=>S MNP=8x1/4=2
=> S MNP=1/4 S abc
A B C D M N P H K
Từ điểm B , kể thêm đoạn thẳng vuông góc với MN, AC tại H và K .
a. +, Xét ΔABC có :
M là trung điểm của AB ( MA = MB )
N là trung điểm của BC ( BN = CN )
=> MN là đường trung bình của ΔABC
=> MN = 1 / 2 AC , MN // AC ( TC của đường trung bình )
+, Xét ΔBMN và ΔBAC có :
MN // BC ( CMT )
=> ΔBMN ~ ΔBAC
=>MN/AC =MB/AB =NB/ BC ( TC Δ DD)
Mà MN / AC = 1 / 2 , tỉ lệ đồng dạng bằng tỉ lệ đường cao của 2 tam giác .
=> MN / AC = BH / BK = 1 / 2
Ta có : SMBN = 1 / 2 . BH . MN
SABC = 1 / 2 . BK . AC
=> SMBN / SABC = 1/2.BH.MN/1/2.BK.AC
=> SMBN / SABC = BH . MN / BK . AC
Mà BK = 2BH , AC = 2MN
=> SMBN / SABC = BH . MN / 2BH . 2 MN
=> SMBN /SABC=1.(BH .MN)/4.(BH .MN)
=> SMBN / SABC = 1 / 4
hay SBMN = 1/4 . SABC .
b.
Bài 2 : a) Ta có : OM // AB => \(\frac{OM}{AB}=\frac{OD}{DB}\)( Hq talet) (1)
ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\)(2)
AB // CD => \(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\)(3)
Từ (1), (2), (3) => OM/AB = ON/AB => OM = ON
b) Ta có : ON // CD => \(\frac{ON}{CD}=\frac{OB}{DB}\)(4)
Cộng từng vế (1) và (4) ta đc : \(\frac{OM}{AB}+\frac{ON}{CD}=\frac{OD}{DB}+\frac{OB}{DB}=\frac{OD+OB}{DB}=1\)
Suy ra : \(\frac{2OM}{AB}+\frac{2ON}{CD}=2\Rightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c) Để mình tính đã nha
sai đầu bài rồi nhé. Cái này là vô lý. xem lại đầu bài nhé
đề sai rồi, mk không chứng minh
xét theo hình vẽ thì có có thể bé hơn 3 đến 4 lần
Gọi Q là trung điểm của AD. Lúc đó thì MNPQ là hình bình hành (dễ c/m)
MP là đường chéo của hình bình hành MNPQ nên \(S_{\Delta MNP}=\frac{1}{2}S_{MNPQ}\)(1)
Gọi E, F là giao điểm của AC với NP và MQ. Kẻ BH \(\perp\) AC, MI \(\perp\) AC .
Lúc đó: \(S_{MNEF}=MI.MN\)
\(=\frac{1}{2}BH.\frac{1}{2}AC\)(tính chất đường trung bình của tam giác)
\(=\frac{1}{2}\left(\frac{1}{2}.BH.AC\right)=\frac{1}{2}S_{\Delta ABC}\)
Chứng minh tương tự, ta được:
\(S_{QPEF}=\frac{1}{2}S_{\Delta ADC}\)
Từ đó suy ra \(S_{MNPQ}=\frac{1}{2}S_{ABCD}\)(2)
Từ (1) và (2) suy ra \(S_{\Delta MNP}=\frac{1}{4}S_{ABCD}\)(đpcm)