K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2020

\(\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}\)

\(=\overrightarrow{EI}+\overrightarrow{IA}+\overrightarrow{EJ}+\overrightarrow{JB}+\overrightarrow{EI}+\overrightarrow{IC}+\overrightarrow{EJ}+\overrightarrow{JD}\)

\(=2\left(\overrightarrow{EI}+\overrightarrow{EJ}\right)+\left(\overrightarrow{IA}+\overrightarrow{IC}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}\)

27 tháng 7 2019
https://i.imgur.com/Ok0y1n7.jpg
27 tháng 7 2019

\(Sao ý cuối là sao sao ấy\)

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}+\overrightarrow{DM}+\overrightarrow{MN}+\overrightarrow{NC}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{DM}\right)+\left(\overrightarrow{NB}+\overrightarrow{NC}\right)=2\overrightarrow{MN}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JB}+\overrightarrow{CI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{CI}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\left(đpcm\right)\)

bn dùng định lí ta lét chứng minh được \(\overrightarrow{MJ}=\overrightarrow{IN}=\dfrac{1}{2}\overrightarrow{AB}\)

C) ta có : \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{MA}+\overrightarrow{BJ}\right)+\left(\overrightarrow{BN}+\overrightarrow{IA}\right)\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{DM}+\overrightarrow{JD}\right)+\left(\overrightarrow{NC}+\overrightarrow{CI}\right)=2\overrightarrow{AB}+\overrightarrow{JM}+\overrightarrow{NI}\) \(=2\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{AB}\left(đpcm\right)\)

d) ta có : \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}+\overrightarrow{JM}+\overrightarrow{IN}=\overrightarrow{IJ}\left(đpcm\right)\)

22 tháng 7 2018

không sao đâu ; mk cam đoan là đúng hoàn toàn

12 tháng 5 2017

A B C D I J

Áp dụng tính chất trung điểm ta có:
Do J là trung điểm của BD nên \(2\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{ID}\).
Theo quy tắc ba điểm: \(\overrightarrow{IB}=\overrightarrow{IA}+\overrightarrow{AB}\)
\(\overrightarrow{ID}=\overrightarrow{IC}+\overrightarrow{CD}\).
Vì vậy: \(2\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{ID}=\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{IC}+\overrightarrow{CD}\)
\(=\left(\overrightarrow{IA}+\overrightarrow{IC}\right)+\left(\overrightarrow{AB}+\overrightarrow{CD}\right)\)
\(=\overrightarrow{AB}+\overrightarrow{CD}\) (ĐPCM).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: \(\overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED} \)\( = 4\overrightarrow {EG}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} \)

Mà: \(\overrightarrow {GA}  + \overrightarrow {GB}  = 2\overrightarrow {GM} ;\) (do M là trung điểm của AB)

\(\overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GN} \) (do N là trung điểm của CD)

\( \Rightarrow \overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = 4\overrightarrow {EG}  + 2(\overrightarrow {GM}  + \overrightarrow {GN} ) = 4\overrightarrow {EG} \) (do G là trung điểm của MN)

b) Vì E là trọng tâm tam giác BCD nên \(\overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = \overrightarrow 0 \)

Từ ý a ta suy ra \(\overrightarrow {EA}  = 4\overrightarrow {EG} \)

c) Ta có: \(\overrightarrow {EA}  = 4\overrightarrow {EG}  \Leftrightarrow \overrightarrow {EA}  = 4.(\overrightarrow {EA}  + \overrightarrow {AG} ) \Leftrightarrow  - 3\overrightarrow {EA}  = 4\overrightarrow {AG} \)

\( \Leftrightarrow 3\overrightarrow {AE}  = 4\overrightarrow {AG} \) hay \(\overrightarrow {AG}  = \frac{3}{4}\overrightarrow {AE} \)

Suy ra A, G, E thẳng hàng và \(AG  = \frac{3}{4}AE \) nên G thuộc đoạn AE.

8 tháng 11 2020

Sai đề rồi!!

NV
22 tháng 11 2019

Tất cả biểu thức đều là vecto, cái nào là độ dài thì nằm trong trị tuyệt đối:

\(\left|BD\right|=\sqrt{AB^2+AD^2}=a\sqrt{5}\)

\(\left|AC\right|=\sqrt{AB^2+BC^2}=a\sqrt{13}\)

a/ \(AB.BD=-BA.BD=-\left|AB\right|.\left|BD\right|.cos\widehat{ABD}\)

\(=-2a.a\sqrt{5}.\frac{2a}{a\sqrt{5}}=-4a^2\)

\(BC.BD=\left|BC\right|.\left|BD\right|.cos\widehat{DBC}=3a.a\sqrt{5}.\frac{a}{a\sqrt{5}}=3a^2\)

\(AC.BD=AC\left(BA+AD\right)=AC.BA+AC.AD\)

\(=AC.AD-AC.AB=\left|AC\right|.\left|AD\right|.cos\widehat{DAC}-\left|AB\right|.\left|AC\right|.cos\widehat{BAC}\)

\(=a.a\sqrt{13}.\frac{3a}{a\sqrt{13}}-2a.a\sqrt{13}.\frac{2a}{a\sqrt{13}}=-a^2\)

\(AC.IJ=\frac{1}{2}AC\left(AD+BC\right)=\frac{1}{2}AC.AD+\frac{1}{2}AC.BC\)

Ta có \(AC.AD=3a^2\) (ngay bên trên)

\(AC.BC=CA.CB=\left|CA\right|.\left|CB\right|.cos\widehat{BCA}=a\sqrt{13}.3a.\frac{3a}{a\sqrt{13}}=9a^2\)

\(\Rightarrow AC.IJ=6a^2\)

22 tháng 11 2019

thanks bn nhìu :>

27 tháng 7 2019
https://i.imgur.com/0y1h4Eu.jpg
27 tháng 7 2019

undefined