Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N E Q F P K S
a) Dễ thấy PE là đường trung bình của \(\Delta ABD\)\(\Rightarrow PE=\frac{1}{2}BD\)
Tương tự : \(QE=\frac{1}{2}AC;QF=\frac{1}{2}BD;PF=\frac{1}{2}AC\)
Theo bài toán, BD = AC nên \(PE=EQ=QF=PF\)
Suy ra PEQF là hình thoi
b) Gọi K là trung điểm của BD . Đường thẳng ME cắt NF tại S
Vì PEQF là hình thoi nên \(EF\perp PQ\)( * )
Xét \(\Delta KQP\)và \(\Delta SFE\)có :
\(ME\perp AB\) ; \(PK//AB\)\(\Rightarrow ME\perp PK\)
Tương tự : \(NF\perp QK\)
\(\Rightarrow\Delta KQP\approx\Delta SFE\)( góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{KP}{KQ}=\frac{AB}{CD}\)( 1 )
Vì \(\Delta MAB\approx\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đồng dạng bằng tỉ số đường cao ) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{SE}{SF}=\frac{ME}{NF}\Rightarrow EF//MN\)( ** )
Từ ( * ) và ( ** ) suy ra : \(PQ\perp MN\)
Gọi E và F là trung điểm của AB và DC tương ứng.
Ta cm 2 vấn đề sau:
1) EF vuông góc với PQ
2) EF // MN
Sơ lược hướng đi là như vậy nha, mai chị sẽ đăng bài cụ thể nhé
Hình vẽ thì bạn tự dựng nha.
Gọi E,F là trung điểm của AB,CD tương ứng
Lần lượt cm các điều sau:
Tương tự:
Cộng theo vế (1) và (2) suy ra
Vi tam giac AMB can tai A nen AM=AB ma AB=DC ( ABCD la hbh ) suy ra AM=AB=CD
tuong tu BC=CN=AD
Ta co DM=AD+AM
DN=DC+CN
Ma AD=CN va AM=CD nen DM=DN suy ra tam giac DMN can tai D (dpcm)