\(\widehat{D}\)\(=2x+9^0\),
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình thì chế tự vẽ nha

kéo dài BH cắt CA tại K

từ DH.DA=DB.DC

\(\Leftrightarrow\frac{DH}{DB}=\frac{DC}{DA}\)

từ đó suy ra \(\Delta BDH\)đồng dạng với \(\Delta ADC\left(c.g.c\right)\)

=>góc DAC= góc HBD=góc KBC

mà góc DAC+góc ACB=90 độ

=>góc KBC+góc KCB=90 độ

=>tam giác BKC vuông tại K

=>góc BKC=90 độ

=>BH là đường cao của tam giác ABC

=>H là trực tâm của tam giác ABC

=>đpcm

kéo dài BH cắt CA tại K

từ DH.DA=DB.DC

⇔DHDB =DCDA 

từ đó suy ra ΔBDHđồng dạng với ΔADC(c.g.c)

=>góc DAC= góc HBD=góc KBC

mà góc DAC+góc ACB=90 độ

=>góc KBC+góc KCB=90 độ

=>tam giác BKC vuông tại K

=>góc BKC=90 độ

=>BH là đường cao của tam giác ABC

=>H là trực tâm của tam giác ABC

=>đpcm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Gọi giao điểm của BF và HI là O (1)Vì ABEF là hình chữ nhật (cmt) \(\Rightarrow BF\)lần lượt là tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)( tc )\(\Rightarrow\hept{\begin{cases}\widehat{ABF}=\frac{1}{2}\widehat{B}\\\widehat{AFB}=\frac{1}{2}\widehat{C}\end{cases}}\)Mà \(\widehat{B}=\widehat{C}\)( tc )\(\Rightarrow\widehat{ABF}=\widehat{AFB}\)Vì ABEF là hcn \(\Rightarrow AE\)là tia phân giác của góc BAF...
Đọc tiếp

Gọi giao điểm của BF và HI là O (1)

Vì ABEF là hình chữ nhật (cmt) 

\(\Rightarrow BF\)lần lượt là tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)( tc )

\(\Rightarrow\hept{\begin{cases}\widehat{ABF}=\frac{1}{2}\widehat{B}\\\widehat{AFB}=\frac{1}{2}\widehat{C}\end{cases}}\)

Mà \(\widehat{B}=\widehat{C}\)( tc )

\(\Rightarrow\widehat{ABF}=\widehat{AFB}\)

Vì ABEF là hcn \(\Rightarrow AE\)là tia phân giác của góc BAF (tc)

\(\Rightarrow\widehat{BAE}=\widehat{FAE}\)

Xét \(\Delta ABO\)và \(\Delta AFO\)có: 

\(\hept{\begin{cases}\widehat{ABF}=\widehat{AFB\left(cmt\right)}\\AB=AF\left(tc\right)\\\widehat{BAE}=\widehat{FAE}\left(cmt\right)\end{cases}}\)\(\Rightarrow\Delta ABO=\Delta AFO\left(g-c-g\right)\)

\(\Rightarrow OB=OF\)( 2 canh tương ứng ) Mà \(O\in BF\)

\(\Rightarrow O\)là trung điểm của BF

Vì ABEF là hcn \(\Rightarrow\)2 đường chéo AE và BF cắt nhau tại trung điểm mỗi đường (tc)

Mà \(O\)là trung điểm BF

\(\Rightarrow O\)là trung điểm BF

\(\Rightarrow AE\)cắt BF tại O (2)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow AE,BF,HI\)đồng quy

 

0
20 tháng 4 2021

A B C P M N

20 tháng 4 2021

a) Xét \(\Delta ABC\)có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(định lí).

\(\Rightarrow\left(\widehat{BAC}+\widehat{ABC}\right)=180^0-\widehat{ACB}\).

Xét \(\Delta PAB\)có:

\(\widehat{APB}+\widehat{PAB}+\widehat{ABP}=180^0\)(định lí).

\(\Rightarrow\widehat{APB}=180^0-\left(\widehat{PAB}+\widehat{ABP}\right)\).

\(\Rightarrow\widehat{APB}=180^0-\frac{\widehat{BAC}+\widehat{ABC}}{2}\).

\(\Rightarrow\widehat{APB}=180^0-\frac{180^0-\widehat{ACB}}{2}\).

\(\Rightarrow\widehat{APB}=90^0+\frac{\widehat{ACB}}{2}\)(điều phải chứng minh).

Ta lại có:

\(\widehat{AMP}=\widehat{MPC}+\widehat{MCP}\)(tính chất góc ngoài của \(\Delta MPC\)).

\(\Rightarrow\widehat{AMP}=90^0+\frac{\widehat{ACB}}{2}\).

Do đó \(\widehat{APB}=\widehat{AMP}\left(=90^0+\frac{\widehat{ACB}}{2}\right)\).

Xét \(\Delta MAP\)và \(\Delta PAB\)có:

\(\widehat{AMP}=\widehat{APB}\)(chứng minh trên).

\(\widehat{MAP}=\widehat{PAB}\)(giả thiết).

\(\Rightarrow\Delta MAP~\Delta PAB\left(g.g\right)\).

\(\Rightarrow\frac{AP}{AB}=\frac{AM}{AP}\)(tỉ số đồng dạng).

\(\Rightarrow AB.AM=AP.AP=AP^2\)(điều phải chứng minh).

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
17 tháng 4 2019

BCFDEAabI

Đặt AB=a, BC=b

a) BE=BC=b

Tam giác BEF=BCF  ( tự chứng minh)(1)

=> \(\widehat{BEF}=90^o\)

Xét tam giác AEB  vuông tại A

Áp dung định lí Pitago ta có: AE=\(\sqrt{BE^2-AB^2}=\sqrt{b^2-a^2}\)

Tam giác IAE đồng dạng tam giác EAB ( tự chứng minh)

=> \(\frac{IA}{EA}=\frac{EA}{AB}\Rightarrow IA=\frac{EA^2}{AB}=\frac{b^2-a^2}{a}\)

=> \(IB=IA+AB=\frac{b^2-a^2}{a}+a=\frac{b^2}{a}\)

Xét tam giác IBE vuông tại E

=> \(IE=\sqrt{IB^2-BE^2}=\sqrt{\frac{b^4}{a^2}-b^2}=\frac{b\sqrt{b^2-a^2}}{a}\)

DF//BI => \(\frac{DE}{EF}=\frac{AE}{IE}=\frac{DE+AE}{EF+IE}=\frac{AD}{IF}\Rightarrow IF=\frac{AD.IE}{AE}=\frac{b.\frac{b.\sqrt{b^2-a^2}}{a}}{\sqrt{b^2-a^2}}=\frac{b^2}{a}\)

b) Có: 

\(\frac{DC}{BC}=\frac{a}{b}\)

 \(\frac{BC}{BI}=\frac{\frac{b^2}{a}}{b}=\frac{b}{a}\)

=> \(\frac{DC}{BC}=\frac{BC}{BI};\widehat{IBC}=\widehat{BCD}\left(=90^o\right)\)

=> tam giác BCD đồng dạng IBC

=> \(\widehat{BIC}=\widehat{CBD}\)

mà \(\widehat{BIC}+\widehat{BCI}=90^o\)

=> \(\widehat{CBD}+\widehat{BCI}=90^o\)

Gọi H là giao điểm BD và CI

=> \(\widehat{BHC}=90^o\)

=> CI vuông BD