\(\widehat{B}=110^o;\widehat{C}=120^o;\widehat{D}=60^o\)

a) Tín...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

a) FN là đường trung bình của tam giác ADC 

\(\Rightarrow FN=\frac{AD}{2}\)

EM là đường trung bình của tam giác ADB 

\(\Rightarrow EM=\frac{AD}{2}\)

NE là đường trung bình của tam giác ABC

\(\Rightarrow EN=\frac{CB}{2}\)

FM là đường trung bình của tam giác BDC

\(\Rightarrow FM=\frac{CB}{2}\)

Mà AD = BC (gt) 

\(\Rightarrow FN=EM=EN=FM=\frac{AD}{2}=\frac{CB}{2}\)

\(\Rightarrow FN=EM=EN=FM\)

=> Tứ giác FNEM là hình thoi 

b)  FM là đường trung bình của tam giác BDC

\(\Rightarrow FM//BC\Leftrightarrow\widehat{DFM}=\widehat{DCB}=80^o\)

FN là đường trung bình của tam giác ADC

\(\Rightarrow FN//AD\Leftrightarrow\widehat{CFN}=\widehat{CDA}=40^o\)

Ta có \(\widehat{CFN}+\widehat{MFN}+\widehat{DFM}=180^o\)

\(\Leftrightarrow40^o+\widehat{MFN}+80^o=180^o\Leftrightarrow\widehat{MFN}=60^o\)

10 tháng 3 2020

Bài 1:

A B C D O M N P Q

a) Xét tam giác AOD có M là trung điểm của AO (gt) Q là trung điểm của OD (gt)

\(\Rightarrow MQ//AD,MQ=\frac{1}{2}AD\left(tc\right)\left(1\right)\)

CMTT \(MN//AB,MN=\frac{1}{2}AB\left(2\right)\)

\(NP=\frac{1}{2}BC\left(3\right)\)

\(PQ=\frac{1}{2}DC\left(4\right)\)

Mà AB=BC=CD=DA (tc) (5)

Từ (1) ,(2) ,(3),(4) và (5)\(\Rightarrow MN=NP=PQ=MQ\)

Xét tứ giác MNPQ có \(MN=NP=PQ=MQ\left(gt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb)  (6)

Ta có: \(\hept{\begin{cases}MQ//AD\left(cmt\right)\\MN//AB\left(cmt\right)\end{cases}}\)mà \(AD\perp AB\)

\(\Rightarrow MQ\perp MN\)

\(\Rightarrow\widehat{QMN}=90^0\)(7) 

Từ (6) và (7) \(\Rightarrow MNPQ\)là hình vuông (dhnb )

b) Ta có\(MQ=\frac{1}{2}AD\left(cmt\right)\)

mà \(AD=16\left(cm\right)\)

\(\Rightarrow MQ=8\left(cm\right)\)

\(\Rightarrow S_{MNPQ}=8^2=64\left(cm^2\right)\)

\(\Rightarrow S_{ABCD}=16^2=256\left(cm^2\right)\)

Vậy diện tích phần trong của hình vuông ABCD nằm ngoài tứ giác MNPQ =\(256-64=192\left(cm^2\right)\)

10 tháng 3 2020

A B D C O K H

Kẻ \(BH\perp AD,CK\perp AD\)

\(\Rightarrow BH//CK\)

Ta có: \(\hept{\begin{cases}BH//CK\\BC//HK\end{cases}\Rightarrow BH=CK}\)( tc cặp đoạn chắn )

Xét tam giác ABD và tam giác ACD có:

2 đường cao BH,CK = nhau , đáy AD chung

\(\Rightarrow S_{ABD}=S_{ACD}\)

\(\Leftrightarrow S_{OAB}+S_{AOD}=S_{AOD}+S_{OCD}\)

\(\Leftrightarrow S_{OAB}=S_{OCD}\left(đpcm\right)\)

PS: có 1 tính chất học ở kì I lớp 8 á nhưng mình không biết cách giải thích sao nữa nên mình dùng cặp đoạn chắn

6 tháng 11 2018

B A M E F D C 1 60 độ

a) - Vì ABCD là hình bình hành(gt)
\(\Rightarrow BC //AD\)và BC=AD
Mà \(E\in BC,F\in AD\)và \(BE=\frac{1}{2}BC,\text{AF}=\frac{1}{2}AD\)(gt)

Nên\(BE//\text{AF}\)và BE=AF
=> ABEF là hình bình hành (1)
Mặt khác AD=2AB(gt)
=>\(AB=\frac{AD}{2}\)

\(\text{AF}=\frac{AD}{2}\left(gt\right)\)

Nên AB=AF(2)
Từ (1) và (2) => ABEF là hình thoi
=> \(AE\perp BF\)
b) Ta có BC//FD(BC//AD,F thuộc AD)
=> BCDF là hình thang (3)
- Vì ABCD là hình bình hành(gt)
Nên \(\widehat{BAD}=\widehat{C}=60^o\)(4)
- Ta có : \(\widehat{B\text{AF}}+\widehat{ABE}=180^0\)(Trong cùng phía,BC//AD)
                          \(\widehat{ABE}=180^0-\widehat{B\text{AF}}\)

                              \(\widehat{ABE}=180^o-60^o=120^o\)

Mà ABEF là hình thoi

=> \(\widehat{B_1}=\widehat{\widehat{\frac{ABE}{2}}=\frac{120^o}{2}=60^o}\)(5)
Từ (4) và (5) => \(\widehat{C}=\widehat{B_1}\)(6)
Từ (3) và (6)
=> BCDF là hình thang cân
c) Vì ABCD là hình bình hành(gt)
Nên AB//CD và AB=CD
Mà M thuộc AB và AB=BM(M đối xứng với A qua B)
=> B là trung điểm của AB

Nên BM//CD và BM=CD

=> BMCD là hình bình hành (7)

- Xét \(\Delta ABF\)có ;
AB=AF(cmt)

=> \(\Delta ABF\)cân tại A
Mà \(\widehat{B\text{AF}}=60^o\)(gt)

Nên \(\Delta ABF\)đều

=> AB=BF=AF
- Xét \(\Delta ABD\)có:
BF là đường trung tuyến ứng với AD (FA=FD)
\(BF=\frac{1}{2}AD\)(BF=FA mà \(FA=\frac{1}{2}AD\))
Nên \(\Delta ABD\)vuông tại B
=> \(\widehat{MBD}=90^0\)(8)
Từ (7) và (8) =>BMCD là hình chữ nhật
Mà E là trung điểm của BC(gt)
Nên E là trung điểm của MD

Hay E,M,D thẳng hàng

6 tháng 11 2018

Câu hỏi của Yaden Yuki - Toán lớp 8 - Học toán với OnlineMath Em tham khảo bài làm ở link này nhé!

6 tháng 11 2018

Do P là trung điểm của BC nên :

=) CP=BP=\(\frac{BC}{2}\)

Do Q là trung điểm của AD nên:

=) AQ=QD=\(\frac{A\text{D}}{2}\)

Mà AD=BC (Tính chất hình bình hành)

=) BP=AQ=PC=QD (1)

Mà 2 cạch AP và BP lại song song với nhau (2)

TỪ (1)và(2) =) Tứ giác ABPQ là hình bình hành

6 tháng 11 2018

b) Do AD=2AB =) AB =\(\frac{A\text{D}}{2}\)=) AQ=AB

Mà AQ=BP (Tính chất hình bình hành)

Và AB=PQ (Tính chất hình bình hành)

=) AB=BP=PQ=AQ

=) Tứ giác ABPQ là hình thoi

=) 2 đường chéo AP và BQ vuông góc với nhau

Hay AP \(\perp\)BQ

c) Do tứ giác ABPQ là hình bình hành nên =) \(\widehat{A}\) =\(\widehat{P}\)\(60^0\)

Xét tam giác BPQ có :

QP=PB (chứng minh trên )

\(\widehat{P}\)=  \(60^0\)

=) Tam giác BPQ là tam giác đều

=) \(\widehat{B}\) =\(60^0\) (1)

Mà \(\widehat{A}\) =\(\widehat{C}\)=\(60^0\)(Do ABCD là hình bình hành ) (2)

Và QP lại song song với BC =) BQDC là hình thang (3)

Tu (1) ;(2) va (3) =) BQDC là hình thang cân

18 tháng 8 2018

cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân

19 tháng 9 2020

a,   Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)

Mat khac do AB=BC nen tam giac ABC can suy ra    \(\widehat{CAB}=\widehat{ACB}\)

  Tu day ta co  \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua    \(\widehat{ADC}\)