\(\widehat{A}=60^o,\widehat{B}=75^o,\widehat{D}=90^o\) , AB=A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

Rồi chứng minh gì hả bạn?

3 tháng 7 2019

Ta có: AB=BC (gt)

Suy ra: Tam giác ABC cân.

Nên    (1)

Lại có \(\widehat{A-1}=\widehat{A-2}\) (2) ( Vì AC là tia phân giác của ^AA^)

Từ (1) và (2) suy ra\(\widehat{C-1}|=\widehat{A-2}\) nên BC// AD (do\(\widehat{C-2}\(ở vị trí so le trong)

~~~~ học tốt~~~~

3 tháng 7 2019

D C F A B E P 1 2 1 2 1 2 3

Xét tứ giác PEBF có: \(\widehat{P}+\widehat{E_2}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F_2}=360^o\)(1)

Tương tự với tứ giác DEBF: \(\widehat{D}+\widehat{E}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F}=360^o\)(2)

Vì \(\widehat{B_2}+\widehat{D}=180^o\)=> \(\widehat{B_1}=\widehat{B_3}=\widehat{D}\)

(1) => \(\widehat{P}+2.\widehat{D}+\widehat{B_2}+\widehat{E_2}+\widehat{F_2}=360^o\Rightarrow\widehat{E_2}+\widehat{F_2}=360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\)

(2) => \(3.\widehat{D}+\widehat{B_2}+\widehat{E}+\widehat{F}=360^o\Rightarrow3.\widehat{D}+\widehat{B_2}+2\left(\widehat{E_2}+\widehat{F_2}\right)=360^o\)

=> \(3.\widehat{D}+\widehat{B_2}+2\left(360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\right)=360^o\)

=> \(2.\widehat{P}=360^o-\left(\widehat{D}+B_2\right)=360^o-180^o=180^o\)

=> \(\widehat{EPF}=\widehat{P}=90^o\)

19 tháng 11 2018

sai đầu bài rồi bạn ơi

21 tháng 11 2018

đúng mà

30 tháng 9 2018

a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)

\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)

\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)

b,  \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)

Do đó: BI là tia p/g của \(\widehat{ABC}\)

Mà      CI là tia phân giác của \(\widehat{BCD}\)

          \(\widehat{ABC}+\widehat{BCD}=180^0\)

\(\Rightarrow\widehat{BIC}=90^0\)

c,  \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)

     \(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\)  (2)

Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)

           

18 tháng 7 2019

lNapkpo.png

Em thử thôi nha, dốt hình lắm:( TRình bày khá lủng củng, chị thông cảm ạ, có khi em sắp xếp thứ tự các đỉnh tương ứng của hai tam giác bằng nhau sai đấy)

a) Dễ chứng minh tam giác AED = tam giác AEB (g.c.g)

Suy ra AD = AB suy ra tam giác ADB cân tại A. Mặt khác dễ thấy A, E, O thẳng hàng mà AE là phân giác góc A nên AO cũng là phân giác góc A. Mặt khác tam giác ADB cân tại A có đường phân giác AO xuất phát từ đỉnh nên đồng thời cũng là đường trung trực do đó OA vuông góc với AE và OD = OB (1). Tức là AE vuông góc với DB.

b) Do tam giác AED = tam giác AEB nên ^ADE = ^ABE

Mặt khác ^BDE = ^ABD (so le trong, do AB// DE)

Từ (2) và (3) suy ra ^DBE = ^ADB, mà hai góc này ở vị trí so le trong nên AD//BE 

Từ đây ta có AD // BE và AB // DE nên theo tính chất đoạn chắn suy ra AD = BE

c) Do AD // BE và AB // DE nên theo tính chất đoạn chắn suy ra DE = AB(4). Ta cần chứng minh AB = EC.(5)

Điều này là hiển nhiên vì theo đề bài AE // BC và AB// EC (do giả thiết AB // DC và E thuộc DC) nên nó đúng theo tính chất đoạn chắn.

Do đó (5) đúng suy ra DE = EC (cùng bằng AB) hay E là trung điểm CD.

Còn lại em bí