Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
27>25>0
→\(\sqrt{27}\)>\(\sqrt{25}\)
\(\sqrt{27}\)>5
6>4>0
\(\sqrt{6}\)>\(\sqrt{4}\)
\(\sqrt{6}\)>2
\(\sqrt{27}\)+\(\sqrt{6}\)>2+5→\(\sqrt{27}\)+\(\sqrt{6}\)>7
0<48<49→\(\sqrt{48}\)<\(\sqrt{49}\)→\(\sqrt{48}\)<7
Từ đó suy ra \(\sqrt{27}\)+\(\sqrt{6}\)>\(\sqrt{48}\)
Ta có
a+1=a+a+b+c>= 4căn4 a^2bc
b+1=b+..........>=.........ab^2c
c+1=c...........>=..........abc^2
=> (a+1)(b+1)(c+1)/abc>= 64abc/abc ( nhân cho 1/abc)
=>(a+1)(b+1)(c+1)/abc >= 64 ( đpcm)
Chúc bạn học tốt!
Xét phương trình hoành độ giao điểm của (d) và (p):
\(x^2=x+m-1\)
\(\Leftrightarrow x^2-x-m+1=0\left(1\right)\)
Xét phương trình (1) có:
\(\Delta=\left(-1\right)^2-4\left(-m+1\right)=4m-3\)
Để (d) cắt (p) tại 2 điểm thì phương trình (1) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\Leftrightarrow4m-3>0\Leftrightarrow m>\dfrac{3}{4}\)
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=1-m\end{matrix}\right.\)
Theo đề bài ta có:
\(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\)
\(\Leftrightarrow\dfrac{4\left(x_1+x_2\right)}{x_1x_2}-x_1x_2+3=0\)
\(\Leftrightarrow\dfrac{4}{1-m}-\left(1-m\right)+3=0\left(m\ne1\right)\)
\(\Leftrightarrow4-\left(1-m\right)^2+3\left(1-m\right)=0\)
\(\Leftrightarrow m^2+m-6=0\)
\(\Leftrightarrow\left(m-2\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(tm\right)\\m=-3\left(ktm\right)\end{matrix}\right.\)
Vậy để (d)cắt (p) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\) thì m=2
1, đk: \(x>0\) và \(x\ne4\)
Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)
Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\) và \(x\ne4\)
\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)
\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)
Vậy MinA=1 khi x=1
2, đk: \(x\ge0;x\ne1;x\ne9\)
Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)
Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)
\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MaxB=-1 khi x=4
3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)
Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)
Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)
\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)
\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MinC=\(\dfrac{1}{11}\) khi x=4
\(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=|\sqrt{5}-1|\)
= \(\sqrt{5}-1\)