Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Giải phương trình:
\(\frac{2-x}{2017}-1=\frac{1-x}{2018}-\frac{x}{2019}\)
<=> \(\left(\frac{2-x}{2017}-\frac{1-x}{2018}\right)+\left(\frac{x}{2019}-1\right)=0\)
<=> \(\frac{2019-x}{2017.2018}+\frac{x-2019}{2019}=0\)
<=> \(\left(x-2019\right)\left(\frac{1}{2019}-\frac{1}{2017.2018}\right)=0\)
<=> x - 2019 = 0
<=> x = 2019
Bài 1:
A B C D O M N P Q
a) Xét tam giác AOD có M là trung điểm của AO (gt) Q là trung điểm của OD (gt)
\(\Rightarrow MQ//AD,MQ=\frac{1}{2}AD\left(tc\right)\left(1\right)\)
CMTT \(MN//AB,MN=\frac{1}{2}AB\left(2\right)\)
\(NP=\frac{1}{2}BC\left(3\right)\)
\(PQ=\frac{1}{2}DC\left(4\right)\)
Mà AB=BC=CD=DA (tc) (5)
Từ (1) ,(2) ,(3),(4) và (5)\(\Rightarrow MN=NP=PQ=MQ\)
Xét tứ giác MNPQ có \(MN=NP=PQ=MQ\left(gt\right)\)
\(\Rightarrow MNPQ\)là hình thoi ( dhnb) (6)
Ta có: \(\hept{\begin{cases}MQ//AD\left(cmt\right)\\MN//AB\left(cmt\right)\end{cases}}\)mà \(AD\perp AB\)
\(\Rightarrow MQ\perp MN\)
\(\Rightarrow\widehat{QMN}=90^0\)(7)
Từ (6) và (7) \(\Rightarrow MNPQ\)là hình vuông (dhnb )
b) Ta có\(MQ=\frac{1}{2}AD\left(cmt\right)\)
mà \(AD=16\left(cm\right)\)
\(\Rightarrow MQ=8\left(cm\right)\)
\(\Rightarrow S_{MNPQ}=8^2=64\left(cm^2\right)\)
\(\Rightarrow S_{ABCD}=16^2=256\left(cm^2\right)\)
Vậy diện tích phần trong của hình vuông ABCD nằm ngoài tứ giác MNPQ =\(256-64=192\left(cm^2\right)\)
A B D C O K H
Kẻ \(BH\perp AD,CK\perp AD\)
\(\Rightarrow BH//CK\)
Ta có: \(\hept{\begin{cases}BH//CK\\BC//HK\end{cases}\Rightarrow BH=CK}\)( tc cặp đoạn chắn )
Xét tam giác ABD và tam giác ACD có:
2 đường cao BH,CK = nhau , đáy AD chung
\(\Rightarrow S_{ABD}=S_{ACD}\)
\(\Leftrightarrow S_{OAB}+S_{AOD}=S_{AOD}+S_{OCD}\)
\(\Leftrightarrow S_{OAB}=S_{OCD}\left(đpcm\right)\)
PS: có 1 tính chất học ở kì I lớp 8 á nhưng mình không biết cách giải thích sao nữa nên mình dùng cặp đoạn chắn
Vì AC là đường phân giác của góc A, suy ra đây là tính tình chất của hình vuông(mỗi đường chéo là đường phân giác 1 góc)
-> Tứ giác ABCD là hình vuông
Mà CH vuông góc với AB ->C trùng với B-> CB vuông góc với B
Theo đề, CH = 6 cm hay CB = 6 cm
-> Diện tích tứ giác ABCD là:
S(ABCD)= 6.6 =36(cm^2)
Vì AC là đường phân giác của góc A, nên:
\(\Rightarrow\)Tứ giác ABCD là hình vuông.
Mà CH vuông góc với AB:
\(\Rightarrow\)C trùng với B
\(\Rightarrow\)CB vuông góc với B
Theo đề bài, CH = 6cm hay CB = 6cm
\(\Rightarrow\)Diện tích tứ giác ABCD là:
S ( ABCD ) = 6.6 = 36 (cm2)
Đáp số:....