Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
E là trung điểm của BA
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của CD
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//FG và EH=FG
hay EHGF là hình bình hành
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)
Xét ΔCDA có
P là trung điểm của CD
Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔCDA
Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2)suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a) QQ là trung điểm của ADAD
MM là trung điểm của ABAB
⇒QM⇒QM là đường trung bình của ΔABDΔABD
⇒QM∥=12BD⇒QM∥=12BD (1)
Tương tự PNPN là đường trung bình của ΔBCDΔBCD
⇒PN∥=12BD⇒PN∥=12BD (2)
Từ (1) và (2) suy ra QM∥=PN(∥=12BD)QM∥=PN(∥=12BD)
⇒⇒ tứ giác MNPQMNPQ là hình bình hành.
Ta có: QQ là trung điểm của ADAD
JJ là trung điểm của ACAC
⇒QJ⇒QJ là đường trung bình của ΔACDΔACD
⇒QJ∥=12CD⇒QJ∥=12CD (1)
Tương tự KNKN là đường trung bình của ΔBCDΔBCD
⇒KN∥=12CD⇒KN∥=12CD (2)
Từ (1) và (2) suy ra QJ∥=KN(∥=12CD)QJ∥=KN(∥=12CD)
⇒⇒ tứ giác JNKQJNKQ là hình bình hành.
b) Tứ giác MNPQMNPQ là hình bình hành
⇒ Gọi MP∩QN=O⇒ Gọi MP∩QN=O
⇒O⇒O là trung điểm của MPMP và QNQN
Tứ giác INKQINKQ là hình bình hành
Có hai đường chéo là QNQN và KJKJ
OO là trung điểm của QNQN
⇒O⇒O là trung điểm của KJKJ
⇒MP,NQ,JK⇒MP,NQ,JK đồng quy tại OO trung điểm của mỗi đường.
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
cục cặc nứng lol