K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HM
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2 tháng 7 2016
sao hả bạn bạn biết thì trả lời giúp mình còn ko thì đừng hỏi vớ vẩn nhé
VH
0
KB
0
BT
0
VD
3
21 tháng 6 2019
Gọi O là giao điểm của AC và BD
Theo định lý Pi-ta-go trong các tam giác : AOB, COD ta có
AB<AO+BO
CD<CO+DO
=> AB+CD<AC+BD
Mà AB+BD<AC+CD
=> AB+CD+AB+BD<AC+BD+AC+CD
=> 2AB+CD+BD<2AC+CD+BD
=> 2AB<2AC
=> AB<AC
TN
0
Đề phải là chứng minh \(AB< AC\) chứ bạn.
Gọi O là giao điểm của 2 đường chéo \(AC\) và \(BD.\)
Xét \(\Delta AOB\) có:
\(AB< AO+OB\) (theo bất đẳng thức trong tam giác) (1)
Xét \(\Delta OCD\) có:
\(CD< CO+OD\) (như ở trên) (2)
Cộng từng vế của (1) và (2) ta được:
\(AB+CD< \left(AO+CO\right)+\left(OB+OD\right)\)
\(\Rightarrow AB+CD< AC+BD\) (3)
Mà \(AB+BD\le AC+CD\left(gt\right)\) (4)
Từ (3) và (4) \(\Rightarrow AB< AC\left(đpcm\right).\)
Chúc bạn học tốt!