Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình lm tắt bạn tự hiểu nhé, ko hiểu chỗ nào thì hỏi mik
tam giác ADC= tam giác ABC (c.c.c)
=> A1=A2 (2 góc tg ứng)
=> AC là p/giác tam giác ADB (1)
Mà tam giác ABD cân do AD= AB ( giả thiết) (2)
từ (1) và (2) => AC là trung trực tam giác ADB
=> AClà trung trực BD (đpcm)
còn tính cái kia thì bạn lm theo hướng như sau
Vì tam giác ADC = tam giác ABC (cmt)
=> C1=C2= góc DCB :2 = 60 độ :2 = 30 độ
Còn A1=A2(cmt) => A1=A2=góc DAB:2 = 120 độ :2 = 60 độ
Xét tam giác ABC có tổng 3 góc = 180 độ r trừ đi góc A2 và góc C2 vừa tìm ra góc B= 90 độ
Vì tam giác ADC = tam giác ABC (cmt)
=> góc B= góc D ( 2 góc tg ứng) => góc D= 90 độ
Vậy D=B=90 độ
a) Ta có : AB=BC và CD=DA (đề bài)
⇒ BD là đường trung trực của AC
b) Ta có : AB=BC (đề bài)
⇒ Δ ABC cân tại B
⇒ Góc BAC = Góc BCA
Tương tự ta chứng minh Góc DAC = Góc DCA (CD=AD...)
mà Góc A = Góc BAC + Góc DAC
Góc C = Góc BCA+ Góc DCA
⇒ Góc A = Góc C
mà A + B + C +D =360; B=100o ; D=80o
⇒ A + C =360 - (100 + 80) = 240
⇒ A = C = 240 : 2 = 120o
a: Ta có: BA=BC
nên B nằm trên đường trung trực của AC\(\left(1\right)\)
Ta có: CD=DA
nên D nằm trên đường trung trực của AC\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AC
b: Xét ΔABD và ΔCBD có
BA=BC
DB chung
DA=DC
Do đó: ΔABD=ΔCBD
Suy ra: \(\widehat{BAD}=\widehat{BCD}=\dfrac{180^0}{2}=90^0\)