K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

A B C D H

OK Nhìn hình hiểu nhé. Đầu tiên lấy giao điểm H của AC và BD.
Xét tam giác AHB có AH+HB > AB
      tam giác DHC có DH+HC > CD (cả hai cứ ghi là do bất đẳng thức tam giác)
Sau đó cộng vào suy ra đc AH+HB+DH+HC > AB+CD
Mà AH+HB+DH+HC = AC+BD >> ĐPCM ( ez game :v )

27 tháng 7 2018

OK bạn, không biết bạn đã học đường trung bình chưa nhỉ

Theo t/c đường trung bình thì ML//AB, NL//DC nên có góc AEN = góc LMN ( đồng vị ) (1) và góc NFD = góc LNM (2) ( so le trong )

Cũng theo tc đường trung bình, NL = 1/2 DC và ML = 1/2AB mà AB = DC nên NL = LM nên góc LNM = góc LMN (3)

Từ (1), (2) và (3) ta suy ra góc AEN = góc NFD 

Còn nếu bạn chưa học đtb thì có thể tham khảo thêm tại đây : http://thuviendethi.com/chung-minh-dinh-ly-duong-trung-binh-trong-tam-giac-bang-kien-thuc-toan-lop-7-9033/

p/s sorry bạn nha mik trả lời hơi muộn do off lâu ngày nên không biết hihi ^.^

Cảm ơn bn nha tính chất đường tb mik vừa hc xong!!! Và mik cx chúc bn học thật tốt nha!!!

DD
23 tháng 6 2021

a) Gọi \(O\)là giao điểm \(AC\)và \(BD\)

Theo bất đẳng thức tam giác ta có: 

\(OA+OB>AB,OB+OC>BC,OC+OD>CD,OD+OA>AD\)

Cộng lại vế theo vế ta được: 

\(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)

\(\Leftrightarrow AC+BD>\frac{1}{2}\left(AB+BC+CD+DA\right)\).

b) Theo bất đẳng thức tam giác: 

\(AC< AB+BC,AC< CD+DA,BD< AB+DA,BD< BC+CD\)

Cộng lại vế theo vế ta được:

\(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Leftrightarrow AC+BD< AB+BC+CD+DA\).

12 tháng 6 2018

A B C D O

Theo bất đẳng thức tam giác ta có:

     OA + OB > AB

     OB + OC > BC

     OC + OD > CD 

     OD + OA > DA

Cộng 4 bđt trên theo vế ta được:

   2(OA + OB + OC + OD) > AB + BC + CD + DA

<=> (OA + OC) + (OB + OD) > (AB + BC + CD + DA)/2

\(\Leftrightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\)

13 tháng 9 2020

Hi vọng bạn có kiến thức vững về BĐT tam giác nha, mấy bài này toàn BĐT tam giác thoi, mình ko chứng minh lại đâu.

Bài 3:

a) Xét tam giác AOB: \(OB>AB-AO\)

Xét tam giác DOC: \(OD>DC-OC\)

Cộng vế theo vế: \(OB+OD>AB+DC-\left(AO+OC\right)\Leftrightarrow BD>AB+DC-AC\Leftrightarrow BD+AC>AB+DC\)

b) Hoàn toàn tương tự với 2 tam giác AOD và BOC:

\(\Rightarrow\hept{\begin{cases}OD>AD-AO\\OB>BC-OC\end{cases}\Rightarrow BD>AD+BC-AC\Leftrightarrow BD+AC>AD+BC}\)

Bài 4: 

a) Từ câu 3 ta có \(\hept{\begin{cases}BD+AC>AB+CD\\BD+AC>AD+BC\end{cases}}\)Cộng vế theo vế:

\(\Rightarrow2\left(BD+AC\right)>AB+BC+CD+DA=P_{ABCD}\Rightarrow BD+AC>\frac{P_{ABCD}}{2}\)

b) Câu này thực ra không cần đề cho trước \(AC< \frac{P_{ABCD}}{2}\)đâu, vì đây là điều hiển nhiên mà

Xét 2 tam giác ABC và ADC: \(\hept{\begin{cases}AC< AB+BC\\AC< AD+DC\end{cases}}\)cộng vế theo vế:

\(\Rightarrow2AC< AB+BC+CD+DA=P_{ABCD}\Rightarrow AC< \frac{P_{ABCD}}{2}\)(1)

Hoàn toàn tương tự với 2 tam giác ABD và CBD \(\Rightarrow BD< \frac{P_{ABCD}}{2}\)(2)

Cộng (1) và (2) vế theo vế: \(AC+BD< P_{ABCD}\)

DD
13 tháng 7 2021

a) Xét tam giác \(ABC\):

\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)

suy ra \(MN=\frac{1}{2}BC,MN//BC\).

Xét tam giác \(DBC\):

\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)

suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).

Suy ra \(PQ=MN,PQ//MN\)

nên \(MNPQ\)là hình bình hành. 

b) - \(MNPQ\)là hình thoi. 

 \(MNPQ\)là hình thoi suy ra \(MN=NP\).

Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)

do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân. 

\(MNPQ\)là hình chữ nhật.

\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).

Chứng minh tương tự ý a) ta cũng có \(NP//AD\)

suy ra \(BC\perp AD\).

\(MNPQ\)là hình vuông.

\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật.