Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}AO\perp OB\\AO\perp OC\end{matrix}\right.\) \(\Rightarrow AO\perp\left(ABC\right)\Rightarrow OA\perp BC\)
\(OH\perp\left(ABC\right)\Rightarrow OH\perp BC\)
\(\Rightarrow BC\perp\left(OAH\right)\)
b/ \(BC\perp\left(OAH\right)\Rightarrow BC\perp AH\Rightarrow AH\) là 1 đường cao trong tam giác ABC
Chứng minh tương tự câu a ta có\(AC\perp\left(OBH\right)\Rightarrow AC\perp BH\Rightarrow BH\) cùng là 1 đường cao
\(\Rightarrow H\) là trực tâm tam giác ABC
c/ Gọi M là giao điểm AH và BC \(\Rightarrow AM\perp BC\)
Áp dụng hệ thức lượng: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OM^2}\) (2)
\(BC\perp\left(OAH\right)\Rightarrow BC\perp OM\Rightarrow OM\) là đường cao ứng với cạnh huyền trong tam giác vuông OBC
Áp dụng hệ thức lượng: \(\frac{1}{OM^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\) (3)
(2);(3) \(\Rightarrow\) đpcm
d/ \(cosA=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{OA^2+OB^2+OA^2+OC^2-\left(OB^2+OC^2\right)}{2AB.AC}=\frac{OA^2}{AB.AC}>0\)
\(\Rightarrow A\) là góc nhọn
Tương tự ta có: \(cosB=\frac{OB^2}{AB.BC}>0\) ; \(cosC=\frac{OC^2}{AC.BC}>0\) nên B, C đều nhọn
Vậy ABC là tam giác nhọn
16.
Đặt cạnh của đáy là x
\(DM=\sqrt{AD^2+AM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)
\(CM=\sqrt{BC^2+BM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)
\(\Rightarrow DM=CM\Rightarrow\Delta_vSMD=\Delta_vSMC\)
\(\Rightarrow SC=SD=2a\sqrt{5}\)
Mà \(SM\perp\left(ABCD\right)\Rightarrow\widehat{SCM}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCM}=60^0\)
\(\Rightarrow\left\{{}\begin{matrix}CM=SC.cos60^0=a\sqrt{5}\\SM=SC.sin60^0=a\sqrt{15}\end{matrix}\right.\) \(\Rightarrow AB=x=\frac{2CM}{\sqrt{5}}=2a\)
Gọi N là trung điểm CD \(\Rightarrow CD\perp\left(SMN\right)\)
\(AM//CD\Rightarrow AM//\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(M;\left(SCD\right)\right)\)
Từ M kẻ \(MM\perp SN\Rightarrow MH\perp\left(SCD\right)\Rightarrow MH=d\left(H;\left(SCD\right)\right)\)
\(MN=AB=2a\)
\(\frac{1}{MH^2}=\frac{1}{SM^2}+\frac{1}{MN^2}\Rightarrow MH=\frac{SM.MN}{\sqrt{SM^2+MN^2}}=\frac{2a\sqrt{15}}{\sqrt{19}}\)
14.
Do \(\widehat{C'BC}\) là góc giữa (ABCD) và (ABC') nên \(\widehat{C'BC}=60^0\)
\(\Rightarrow CC'=BC.tan60^0=a\sqrt{3}\)
15.
Gọi H là trung điểm BC \(\Rightarrow OH\perp BC\)
Chóp tứ giác đều \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\)
\(\Rightarrow BC\perp\left(SOH\right)\)
Từ O kẻ \(OK\perp SH\Rightarrow OK\perp\left(SBC\right)\Rightarrow OK=d\left(O;\left(SBC\right)\right)\)
\(OH=\frac{1}{2}AB=\frac{a}{2}\) ; \(AC=a\sqrt{2}\Rightarrow OA=\frac{a\sqrt{2}}{2}\)
\(SO=\sqrt{SA^2-OA^2}=\frac{a\sqrt{2}}{2}\)
\(\frac{1}{OK^2}=\frac{1}{SO^2}+\frac{1}{OH^2}\Rightarrow OK=\frac{SO.OH}{\sqrt{SO^2+OH^2}}=\frac{a\sqrt{6}}{6}\)
Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:
p=O'A'OA=22=1�=�'�'��=22=1;
q=O'B'OB=13�=�'�'��=13;
r=O'C'OC=46=23�=�'�'��=46=23.