Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N là trung điểm của BC
Xét ΔABC có
N,P lần lượt là trung điểm của BC,BA
=>NP là đường trung bình của ΔABC
=>NP//AC
=>Hình chiếu song song của điểm P theo phương AC lên mp(BCD) là điểm N
Gọi H là hình chiếu vuông góc của A lên (BCD)
\(AB=AC=AD\Rightarrow HA=HB=HC\Rightarrow H\) là tâm đáy
\(\Rightarrow DH\perp BC\)
Mà \(AH\perp\left(BCD\right)\Rightarrow AH\perp BC\)
\(\Rightarrow BC\perp\left(ADH\right)\Rightarrow BC\perp AD\)
b/ Chắc bạn nhầm đề?
Hoàn toàn tương tự câu a, ta chứng minh được \(CD\perp\left(ABH\right)\Rightarrow CD\perp AB\Rightarrow\left(AB;CD\right)=90^0\)
Điểm I để làm gì nhỉ? :<
Gọi K là trung điểm của CD
Xét ΔADC có
Q,K lần lượt là trung điểm của DA,DC
=>QK là đường trung bình của ΔADC
=>QK//AC
=>Hình chiếu song song của điểm Q theo phương AC lên mp(BCD) là điểm K