Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Chọn mp(ACD) có chứa MN
Trong mp(BCD), gọi K là giao điểm của BO và CD
K∈BO⊂(ABO)
K∈CD⊂(ACD)
Do đó: K∈(ABO) giao (ACD)(1)
ta có: A∈(ABO)
A∈(ACD)
Do đó: A∈(ABO) giao (ACD)(2)
Từ (1),(2) suy ra (ABO) giao (ACD)=AK
Gọi H là giao điểm của AK và MN
=>H là giao điểm của MN và (BAO)
b: Chọn mp(ABK) có chứa AO
H∈AK⊂(ABK)
H∈MN⊂(BMN)
Do đó: H∈(ABK) giao (BMN)(3)
Ta có: B∈(ABK)
B∈(BMN)
Do đó: B∈(ABK) giao (BMN)(4)
Từ (3),(4) suy ra (ABK) giao (BMN)=BH
Gọi I là giao điểm của BH và AO
=>I là giao điểm của AO và mp(BMN)

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E
=> E ∈ DC, mà DC ⊂ (SDC)
=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N
=> N ∈ ME mà ME ⊂ (MAB)
=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)
b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)
=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)
=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO
Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN
Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy.
Phương án A sai vì : Ba đường thẳng AB, MN, CA cùng trong mặt phẳng (ABC) nên ba vecto A B → , M N → , C A → đồng phẳng
Phương án B sai vì: hai đường thẳng BC, AD cùng song song với mặt phẳng (MNPQ) có chứa đường thẳng MP nên ba vecto M P → , B C → , A D → đồng phẳng
Phương án C sai vì : Đường thẳng AD // (MNPQ) và mặt phẳng này chứa hai đường thẳng MP, PQ nên ba vecto A D → , M P → , P Q → đồng phẳng
Phương án D đúng vì : Đường thẳng BD cắt mặt phẳng (MNPQ) và nó chứa hai đường thẳng MP, PQ nên M P → , P Q → , P D → không đồng phẳng
Đáp án D