K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2024

Em coi lại đề, M là trung điểm của AC và BC? 1 điểm làm sao là trung điểm của 2 đoạn này được nhỉ?

7 tháng 1 2024

M là trung điểm của AC và BD đúng ko nhỉ

 

Trong mp(BCD), gọi E là giao điểm của JK và CD

Ta có: \(IE\cap AD=\left\{F\right\}\)

\(IE\subset\left(IJK\right)\)

Do đó: \(AD\cap\left(IJK\right)=F\)

Xét ΔACD có I,F,E thẳng hàng

nên \(\dfrac{AI}{IC}\cdot\dfrac{CE}{ED}\cdot\dfrac{DF}{FA}=1\)

=>\(1\cdot2\cdot\dfrac{DF}{FA}=1\)

=>\(\dfrac{FD}{FA}=\dfrac{1}{2}\)

=>\(\dfrac{FA}{FD}=2\)

4 tháng 12 2019

I, J lần lượt là trung điểm của AC và BC nên IJ // AB. Do đó giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H. Vậy IJ // KH // AB. Ta có ∆BJK = ∆AIH ⇒ JK = IH. Hơn nữa KH ≠ IJ.

Vậy thiết diện là hình thang cân IJKH

Đáp án A

18 tháng 12 2016

a) Xét (IJK) và (ACD)

có I thuộc (IJK) giao (ACD)

Trong (BCD) vẽ JK cắt CD tại E

=> E thuộc (IJK) giao (ACD) (đoạn này m ghi tắt :D)

Vậy IE là giao tuyến của (IJK) và (ACD)

Ta có E thuộc IE, IE là con của (IJK)

E thuộc CD

=> E là giao điểm của CD với (IJK)

b) Xét (ABD) và (IJK)

K thuộc (ABD) giao (IJK)

=> Kx là giao tuyến của (ABD) và (IJK)

mà AB // IJ

=> Kx // AB
Trong (ABD) vẽ Kx cắt AD tại F

=> F là giao điểm của AD và (IJK)

Ta có Kx // AB và Kx // IJ (cmt)

mà F thuộc Kx

=> KF // IJ

 

 

NV
7 tháng 1 2024

Trong mp (ACD) kéo dài MN và CD cắt nhau tại I

Trong mp (BCD) nối IQ cắt BD tại J

Áp dụng định lý Menelaus trong tam giác ACD:

\(\dfrac{AM}{MC}.\dfrac{CI}{ID}.\dfrac{DN}{NA}=1\Rightarrow1.\dfrac{CI}{ID}.\dfrac{1}{2}=1\Rightarrow IC=2ID\)

Do \(BC=4BQ\Rightarrow QC+QB=4QB\Rightarrow QC=3QB\)

Menelaus cho tam giác BCD:

\(\dfrac{QC}{QB}.\dfrac{BJ}{JD}.\dfrac{DI}{IC}=1\Rightarrow3.\dfrac{BJ}{JD}.\dfrac{1}{2}=1\Rightarrow\dfrac{BJ}{JD}=\dfrac{2}{3}\)

Menelaus cho tam giác CQI:

\(\dfrac{ID}{DC}.\dfrac{CB}{BQ}.\dfrac{QJ}{JI}=1\Rightarrow1.4.\dfrac{JQ}{JI}=1\Rightarrow\dfrac{JQ}{JI}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{JB}{JD}+\dfrac{JQ}{JI}=\dfrac{2}{3}+\dfrac{1}{4}=\dfrac{11}{12}\)

NV
7 tháng 1 2024

Điểm P là điểm nào em nhỉ?

11 tháng 6 2019

15 tháng 2 2017

Đáp án C.

+ (ABD) và (IMK) có điểm chung là k và lần lượt chứa hai đường thẳng AB // MI

=> Giao tuyến của (ABD) và (IMK) là đường thẳng đi qua K và song song với AB  và AD tại E Thiết diện cần tìm là tứ giác MKEI có 

Từ (1) và (2) => Tứ giác MKEI là hình thang cân với đáy lớn là MI

+ Có 

Gọi H là hình chiếu vuông góc của E lên MI 2IH + EK = IM 

NV
19 tháng 12 2020

Trong mp (ACD), kéo dài IJ cắt CD tại E thì E là giao điểm của CD và (IJK)