
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi I, J và K lần lượt là trung điểm của các cạnh BC, CD và BD. Theo tính chất trọng tâm của tam giác ta có :

a. Do \(\left\{{}\begin{matrix}AB\perp BC\\AB\perp BD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(BCD\right)\Rightarrow AB\perp CD\) (1)
Mặt khác BCD vuông tại C \(\Rightarrow CD\perp BC\) (2)
(1);(2) \(\Rightarrow CD\perp\left(ABC\right)\Rightarrow CD\perp AC\Rightarrow\Delta ACD\) vuông tại C
b. Gọi M là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}EM=\frac{1}{2}CD=a\\FM=\frac{1}{2}AB=a\end{matrix}\right.\) theo t/c đường trung bình
Mặt khác \(\left\{{}\begin{matrix}AB//FM\\CD//EM\end{matrix}\right.\) \(\Rightarrow\left(AB;CD\right)=\left(FM;EM\right)=\widehat{FEM}\)
Áp dụng định lý hàm cos cho tam giác \(FME\)
\(cos\widehat{FEM}=\frac{MF^2+EF^2-ME^2}{2ME.EF}=\frac{\sqrt{3}}{2}\Rightarrow\widehat{FEM}=30^0\)

- a) \(m = \left(\right. A D M \left.\right) \cap \left(\right. A B N \left.\right)\) là đường thẳng duy nhất đi qua \(A\) nằm trong cả hai mặt phẳng. (Dựng được bằng cách lấy một mặt phẳng phụ \(\pi\) qua \(A\) và lấy giao tuyến \(\pi \cap \left(\right. A D M \left.\right)\) và \(\pi \cap \left(\right. A B N \left.\right)\).)
- b) Với \(P \in m\) (nội tiếp tứ diện), đặt \(Q = M P \cap \left(\right. A D C \left.\right)\). Khi đó \(\left(\right. M N P \left.\right) \cap \left(\right. A D C \left.\right) = N Q\).