Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Vé hình ta thấy khối tứ diện MNPQ đồng dạng với tứ diệnABCD theo tỷ số k = 1 3
Do đó V M N P Q V A B C D = 1 3 3 = 1 27
Gọi I, J, K lần lượt là trung điểm của BD, CD, BC.
Thể tích khối tứ diện vuông ABCD là:
tương tự:
Chọn: A
Chọn C
Dấu = xảy ra khi:
Suy ra
Ta có
Mặt khác
Vậy phương trình mặt phẳng (B' C' D') là
Đáp án A
Gọi H là hình chiếu vuông góc của B lên đường thẳng CD, khi đó ta có
Do đó yêu cầu bài toán trở thành tìm H để khoảng cách BH là lớn nhất hay nhỏ nhất.
Ta thấy BH nhỏ nhất đúng bằng khoảng cách từ B đến mp (P), ta có
Ta có:
Ta có ∆ M N P đồng dạng với ∆ B C D theo tỉ số
Dựng B ' C ' qua M và song song BC. C ' D ' qua P và song song với CD.
Chọn D.
Đáp án A
Gọi M là trung điểm của AC và đặt độ dài AB = x
Vì B 1 , D 1 là trọng tâm tam giác A B C , A C D ⇒ M D 1 M B = M B 1 M D = 2 3
Suy ra:
B 1 D 1 / / B D ⇒ B 1 D 1 B D = M 1 D 1 M B = 1 3 ⇒ B 1 D 1 = B D 3
Tương tự, ta được A 1 B 1 C 1 D 1 là tứ diện đều cạnh x 3 ⇒ V V 1 = 27 ⇔ V 1 = V 3 3
Khi đó V 2 = V 1 3 3 = V 3 3.3 ; V 4 = V 3 3.4 → V n − V 3 3 n
Suy ra V + V 1 + ... + V n
= V 1 + 1 3 3 + 1 3 6 + 1 3 9 + ... + 1 3 3 n = V . S
Tống S là tổng của cấp số nhân với:
u 1 = 1 ; q = 1 27 ⇒ S = 1 − 1 27 1 − 1 27 n = 27. 1 − 27 − n 26
Vậy P = lim x → ∞ V .27 1 − 27 − n 26 = 27 26 V
vì lim x → + ∞ 27 − n = lim x → + ∞ 1 27 n = 0