Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu vẽ thêm 1 điểm thì qua điểm này và mỗi điểm trong số n điểm đã cho ta vẽ thêm được 1 đường thẳng
Vì vậy số đường thẳng tăng thêm là 8
=> n=8
Ta chọn 1 điểm bất kỳ.Qua diểm đó ta nối lần lượt từng điểm trong 19 điểm còn lại ta vẽ được 19 đường thẳng
Làm như vậy ta vẽ được 20x19 đường thẳng nhưng mỗi đường thẳng đã được tính 2 lần do đó có tất cả : (20x19) : 2= 190(đường thẳng)
Cho n điểm trong đó không có bất kì 3 điểm nào thẳng hàng.
Cứ qua 2 điểm vẽ được 1 đường thẳng thì số đường thẳng vẽ được là nx(n-1): 2 lưu ý nx(n-1) là tử số 2 là mẫu số b,
Nếu qua 3 điểm không thẳng hàng ta vẽ được 3x2:2=3 đường thẳng giảm đi số đường thẳng là: 3-1=2
vậy trong 20 điểm mà có 3 điểm thẳng hàng thì ta vẽ được: 190-2=188 đường thẳng
Vì có n điểm nên mỗi điểm ta vẽ được n-1 đường thẳng (vì không có 3 điểm nào thẳng hàng)
nên với n điểm ta vẽ được n(n-1) đường thẳng.
Nhưng mỗi đường thẳng đã được tính 2 lần nên chỉ có n(n-1)/2 đường thẳng.
Gọi số điểm ban đầu là x
Theo đề, ta có: \(1+7\left(x-7\right)+C^2_{x-7}=170\)
=>\(7x-48+\dfrac{\left(x-7\right)!}{\left(x-9\right)!\cdot2!}=170\)
=>7x-48+1/2(x^2-15x+56)=170
=>x=20