Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
Bài 1) .
Ta có : AB =AC ( gt)
=> ∆ABC cân tại A
=> B = C
Xét ∆ ABE và ∆ ACD ta có
AD = DE ( gt)
AB = AC ( gt)
B = C ( cmt)
=> ∆ABE = ∆ACD ( c.g.c)
=> EAB = DAC (dpcm)
b) Vì M là trung điểm BC
=> BM = MC
Mà ∆ABC cân tại A ( cmt)
=> AM là trung tuyến ∆ABC
=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC
Mà D,E thuộc BC
AM vuông góc với DE
Mà ∆ADE cân tại A ( AD = AE )
=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE
=> AM là phân giác DAE
c) Vì AM là phân giác DAE
=> DAM = EAM = 60/2 = 30 độ
= > Mà AM vuông góc với DE (cmt)
=> AME = AMD = 90 độ
=> AME + MAE + AEM = 180 độ
=> AEM = 180 - 90 - 30 = 60 độ
Mà ∆ADE cân tại A
=> ADE = AED = 60 độ
Bài 2)
Trong ∆ABC có A = 90 độ
=> BAC = 90 độ :))))))
0,5 . x - \(\frac{3}{7}\) : \(\frac{1}{2}\)= 1 \(\frac{1}{7}\)
\(\frac{1}{2}\). x - \(\frac{3}{7}\)x \(\frac{2}{1}\)= \(\frac{8}{7}\)
\(\frac{1}{2}\) . x - \(\frac{6}{7}\) = \(\frac{8}{7}\)
\(\frac{1}{2}\) . x = \(\frac{8}{7}\) + \(\frac{6}{7}\)
\(\frac{1}{2}\) . x = \(\frac{14}{7}\)
\(\frac{1}{2}\) . x = 2
x = 2 : \(\frac{1}{2}\)
x = 4
Vậy x = 4
Sau khi ib với Hoàng Nguyễn thì đề bài như sau
Tìm \(n\inℕ\)biết
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)
ĐKXĐ: n > 1
Ta đi c/m bài toán tổng quát
\(\frac{1}{\sqrt{a-1}+\sqrt{a}}=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}\)
\(=\frac{\sqrt{a}-\sqrt{a-1}}{a-a+1}\)
\(=\sqrt{a}-\sqrt{a-1}\)
Áp dụng vào bài toán đc
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)
\(\Leftrightarrow\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n}-\sqrt{n-1}=11\)
\(\Leftrightarrow\sqrt{n-1}-1=11\)
\(\Leftrightarrow\sqrt{n-1}=12\)
\(\Leftrightarrow n-1=144\)
\(\Leftrightarrow n=145\left(TmĐKXĐ\right)\)
Vậy n = 145
1. Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{16}=\frac{x-y}{18}=\frac{x+y+x-y}{16+18}=\frac{x}{17}\)
Từ bài ra => \(\frac{x}{17}=\frac{xy}{17}\)
<=> \(x=xy\)
<=> xy - x = 0
<=> x ( y-1) =0
<=> x = 0 hoặc y = 1
+) Với x = 0 , ta có: \(\frac{y}{16}=\frac{0}{17}=-\frac{y}{18}\)=> y = 0
+) Với y = 1; ta có: \(\frac{x+1}{16}=\frac{x}{17}=\frac{x-1}{18}\)
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{x+1}{16}=\frac{x}{17}=\frac{1}{-1}=-1\Rightarrow x=-17\) thử lại thỏa mãn
Vậy x = 0; y= 0 hoặc x = -17 ; y = 1
Giải :
\(S_{ABD}+S_{ACD}=S_{ABC}\).
\(\frac{1}{2}AB\cdot AD\cdot\sin\frac{A}{2}+\frac{1}{2}AD\cdot AC\cdot\sin\frac{A}{2}=\frac{1}{2}AB\cdot AC\cdot\sin A\)
\(\Rightarrow\frac{1}{2}AD\cdot\sin\frac{A}{2}\left(AB+AC\right)=\frac{1}{2}AB\cdot AC\cdot2\cdot\sin\frac{A}{2}\cdot\cos\frac{A}{2}\)
\(\Rightarrow\frac{2\cdot AB\cdot AC\cdot\cos\frac{A}{2}}{AB+AC}\) (đpcm).