Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt phân số trên là A
tử là
(1+2015/2)+...+(1+2/2015)+(1+1/2016)+1
=2017/2+....+2017/2015+2017/2016+2017/2017
=2017.(1/2+...+1/2015+1/2016+1/2017)
=>A=\(\dfrac{2017.\left(\dfrac{1}{2}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
Vậy A=2017
\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)
Ta có :
B = \(\dfrac{2015}{1}+\dfrac{2014}{2}+\dfrac{2013}{3}+...+\dfrac{2}{2014}+\dfrac{1}{2015}\) => B = \(\left(1+\dfrac{2014}{2}\right)+\left(1+\dfrac{2013}{3}\right)+...+\left(1+\dfrac{2}{2014}\right)+\left(1+\dfrac{1}{2015}\right)+1\) => B = \(\dfrac{2016}{2}+\dfrac{2016}{3}+...+\dfrac{2016}{2014}+\dfrac{2016}{2015}+\dfrac{2016}{2016}\) => B = \(2016\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\) Ta có :
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{2016\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)}\)
=> \(\dfrac{A}{B}=\dfrac{1}{2016}\)
Vậy \(\dfrac{A}{B}=\dfrac{1}{2016}\)
\(\dfrac{1-2x}{2017}+\dfrac{2-2x}{2016}=\dfrac{3-2x}{2015}+\dfrac{4-2x}{2014}\)
\(\Rightarrow\left(\dfrac{1-2x}{2017}+1\right)+\left(\dfrac{2-2x}{2016}+1\right)=\left(\dfrac{3-2x}{2015}+1\right)+\left(\dfrac{4-2x}{2014}+1\right)\)
\(\Rightarrow\dfrac{2018-2x}{2017}+\dfrac{2018-2x}{2016}-\dfrac{2018-2x}{2015}-\dfrac{2018-2x}{2014}=0\)
\(\Rightarrow\left(2018-2x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(2017>2016>2015>2014\) nên
\(\dfrac{1}{2017}< \dfrac{1}{2016}< \dfrac{1}{2015}< \dfrac{1}{2014}\)
\(\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}< 0\)
\(\Rightarrow2018-2x=0\Rightarrow x=1009\)
Vậy...........
Chúc bạn học tốt!!!
\(\dfrac{1-2x}{2017}+\dfrac{2-2x}{2016}=\dfrac{3-2x}{2015}+\dfrac{4-2x}{2014}\)
\(\Rightarrow\left(\dfrac{1-2x}{2017}+1\right)+\left(\dfrac{2-2x}{2016}+1\right)=\left(\dfrac{3-2x}{2015}+1\right)+\left(\dfrac{4-2x}{2014}+1\right)\)
\(\Rightarrow\dfrac{2018-2x}{2017}+\dfrac{2018-2x}{2016}-\dfrac{2018-2x}{2015}-\dfrac{2018-2x}{2014}=0\)
\(\Rightarrow\left(20418-2x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
\(Ta\) \(có\)\(:\) \(2017>2016>2015>2014\)
\(\Rightarrow\dfrac{1}{2017}< \dfrac{1}{2016}< \dfrac{1}{2015}< \dfrac{1}{2014}\)
\(\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}< 0\)
\(\Rightarrow2018-2x=0\)
\(\Rightarrow2x=2018-0\)
\(\Rightarrow2x=2018\)
\(\Rightarrow x=2018:2\)
\(\Rightarrow x=1009\)
\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{2016}\left(1+2+...+2016\right)\)\(=1+\dfrac{2.3}{2.2}+\dfrac{3.4}{3.2}+...+\dfrac{2016.2017}{2016.2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)
\(=\dfrac{1}{2}\left(2+3+...+2017\right)\)
Đặt \(A=2+3+...+2017\)
\(=2017+2016+...+2\)
\(\Rightarrow2A=\left(2+2017\right)+\left(3+2016\right)+...+\left(2017+2\right)\) ( 2016 cặp số )
\(\Rightarrow2A=2019+2019+...+2019\) ( 2016 số )
\(\Rightarrow2A=4070304\)
\(\Rightarrow A=2035152\)
\(\Rightarrow P=1017576\)
Vậy...
P= 1+1/2.3+1/3.6+...+1/2016.2033136
P= 1+3/2+2+...+2017/2
P= 2/2+3/2+4/2+...+2017/2
P=\(\dfrac{2+3+4+...+2017}{2}\)
P= \(\dfrac{2035152}{2}\)
P= 1017576