\(S=2+2.2^2+3.2^2+4.2^2+...++2014.2^{2014}\)

a,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

a) Giải

Ta có: \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\)

\(\Rightarrow2S=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2012}}+\dfrac{2}{2^{2013}}\)

\(2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)

\(\Rightarrow2S-S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2012}}-\dfrac{1}{2^{2013}}\)

\(\Rightarrow S=1-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=\dfrac{2^{2013}-1}{2^{2013}}\)

6 tháng 3 2018

b) Giải

Từ \(A=\dfrac{2011^{2012}+1}{2011^{2013}+1}\)

\(\Rightarrow2011A=\dfrac{2011^{2013}+20111}{2011^{2013}+1}=\dfrac{2011^{2013}+1+2010}{2011^{2013}+1}=1+\dfrac{2010}{2011^{2013}+1}\)

Từ \(B=\dfrac{2011^{2013}+1}{2011^{2014}+1}\)

\(\Rightarrow2011B=\dfrac{2011^{2014}+2011}{2011^{2014}+1}=\dfrac{2011^{2014}+1+2010}{2011^{2014}+1}=1+\dfrac{2010}{2011^{2014}+1}\)

Vì 20112013 + 1 < 20112014 + 1 và 2010 > 0

\(\Rightarrow\dfrac{2010}{2011^{2013}+1}>\dfrac{2010}{2011^{2014}+1}\)

\(\Rightarrow2011A>2011B\)

\(\Rightarrow A>B\)

Vậy A > B.

22 tháng 11 2016

1. 5n có 2 chữ số tận cùng là 25.

22 tháng 11 2016

1)Vì n>1\(\Rightarrow\)n có dạng 2k,2k+1(k\(\in\)N*)

Xét n có dạng 2k\(\Rightarrow5^{2k}\)=\(25^k\) có 2 chữ số tận cùng là 25

Xét n có dạng 2k+1

\(\Rightarrow5^{2k+1}\)=\(5^{2k}\cdot5=25^k\cdot5\)

\(25^k\) có 2 chữ số tận cùng là 25

\(\Rightarrow\)\(25^k\cdot5\) có 3 chữ số tận cùng là 125

\(\Rightarrow\)\(25^k\cdot5\) có 2 chữ số tận cùng là 25

Vậy trong trường hợp nào thì \(5^n\) luôn có 2 chữ số tận cùng là 25(n>1)

13 tháng 4 2017

a)3
b) lấy 2A-A thì ra A r làm típ
tk mình đi

10 tháng 12 2017

S=2+22+23+...+2100

S=(2+22+23+24)+...+(297+298+299+2100)

S=2x(1+2+22+23)+...+297x(1+2+22+23)

S=2x15+...+297x15

S=15x(2+...+297)

Vậy S\(⋮\)15

S=2+22+23+...+2100

=>2S=22+23+...+2101

=>S=2S-S=(22+23+...+2101)-(2+22+23+...+2100)

=>S=2101-2=225x4-2=...6-2=...4

Vậy chữ số tận cùng của S là 4

20 tháng 3 2020

a) \(S=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\)

\(\Leftrightarrow S=\left(1-2\right)+\left(3-4\right)+....+\left(2013-2014\right)+2015\)

Vì từ 1 đến 2014 có 2014 số hạng => có 1007 cặp => Có 1007 cặp -1 và số 2015

\(\Rightarrow S=\left(-1\right)\cdot1007+2015\)

<=>S=-1007+2015

<=> S=1008