\(2^2+2^3+2^4+2^5\)+...+\(2^{100}\).Chứng tỏ rằn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 9 2021

\(S=2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{99}\right)\)chia hết cho \(3\).

21 tháng 3 2019

\(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)

\(S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(S>\frac{1}{2}-\frac{1}{10}\)

\(S>\frac{4}{10}=\frac{2}{5}\)

21 tháng 3 2019

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9.10}< S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3\cdot4}+...+\frac{1}{8.9}\)

=>\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}< S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{8}-\frac{1}{9}\)

=> \(\frac{1}{2}-\frac{1}{10}< S< 1-\frac{1}{9}\)

=> \(\frac{2}{5}< S< \frac{8}{9}\)(dpcm )

12 tháng 8 2016

S = 1 + 2 + 22 + 23 + ... + 220 + 221 (có 22 số; 22 chia hết cho 2)

S = (1 + 2) + (2+ 23) + ... + (220 + 221)

S = 3 + 22.(1 + 2) + ... + 220.(1 + 2)

S = 3 + 22.3 + ... + 220.3

S = 3.(1 + 22 + ... + 220) chia hết cho 3 (đpcm)

\(S=1+2+2^2+2^3+....+2^{21}\)

\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+......+2^{20}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+2^4+.....+2^{20}\right)\)

\(=3\left(1+2^2+2^4+....+2^{20}\right)\)

Chia hết cho 3

24 tháng 1 2017

Bài 1:

\(A=7+7^3+7^5+...+7^{1999}\)

\(\Rightarrow A=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)

\(\Rightarrow A=\left(7+343\right)+7^4\left(7+7^3\right)+...+7^{1996}\left(7+7^3\right)\)

\(\Rightarrow A=350+7^4.350+...+7^{1996}.350\)

\(\Rightarrow A=\left(1+7^4+...+7^{1996}\right).350⋮35\)

\(\Rightarrow A⋮35\left(đpcm\right)\)

b2:

a) \(S=1+3+3^2+...+3^{49}\)

\(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(\Rightarrow S=\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)

\(\Rightarrow S=4+3^2.4+...+3^{48}.4\)

\(\Rightarrow S=\left(1+3^2+...+3^{48}\right).4⋮4\)

\(\Rightarrow S⋮4\left(đpcm\right)\)

c) \(S=1+3+3^2+...+3^{49}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{50}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{50}\right)-\left(1+3+3^2+...+3^{49}\right)\)

\(\Rightarrow2S=3^{50}-1\)

\(\Rightarrow S=\frac{3^{50}-1}{2}\left(đpcm\right)\)

24 tháng 1 2017

Giúp mình câu b bài 2 luôn được không?

6 tháng 3 2018

ban h cho minh di

12 tháng 7 2018

\(S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}\right)\)Ta có :

 \(S< 5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=5\left(1-\frac{1}{100}\right)< 5\)

\(S>5\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)=5\left(\frac{1}{2}-\frac{1}{101}\right)>2\)

\(\Rightarrow2< S< 5\)

1 tháng 2 2019

bài này dễ mà

22 tháng 4 2018

M=189.625245

N=94.81262248

=> m/n=  2

29 tháng 4 2018

m/n =2

24 tháng 10 2016

a) tổng S bằng

(2014+4).671:2=677 039

b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n

→2n.(n+2013)\(⋮̸\)2

C)M=2+22+23+...+220

=(2+22+23+24)+...+(217+218+219+220)

=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)

=30.1+...+216.(2+22+23+24)

=30.1+...+216.30

=30(1+25+29+213+216)\(⋮\)5

 

 

23 tháng 10 2016

c, M= 2 + 22 + 23 +........220

Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5

Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)

= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )

= 30+24 .30 + 28. 30 +.........+ 216.30

= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5

Vậy M chia hết cho 5

13 tháng 5 2018

Đáp án nè:

Đặt A=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{99}}\)

3A=\(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

3A+A=\(\left(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)\)

4A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}-\dfrac{1}{3^{100}}\)

4A bé hơn(sorry tớ không thấy dấu bé hơn)\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)

Đặt B=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)

3B=\(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)

4B=\(3-\dfrac{1}{3^{99}}\) bé hơn 3 \(\Rightarrow\)B bé hơn \(\dfrac{3}{4}\)

\(\Rightarrow\) 4A bé hơn\(\dfrac{3}{4}\Rightarrow\)A bé hơn \(\dfrac{3}{16}\)

Tick cho mình nha , ngồi đánh máy tính mỏi cả mắt lun

Chúc học tốtvui

AH
Akai Haruma
Giáo viên
28 tháng 4 2018

Lời giải:

Ta có:
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\)

\(S> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)

\(\Leftrightarrow S> \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2016-2015}{2015.2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{2016}=\frac{1007}{2016}\)

--------------------------

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}\)

\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2014}{2015}\)

\(\Leftrightarrow S< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2015-2014}{2014.2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2014}-\frac{1}{2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2015}=\frac{2014}{2015}\)

Vậy ta có đpcm.