K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
28 tháng 7 2024
Lời giải:
Nếu $n$ lẻ thì:
$S=a+(a^2+a^3)+(a^4+a^5)+....+(a^{n-1}+a^n)$
$=a+a^2(1+a)+a^4(1+a)+....+a^{n-1}(1+a)$
$=a+(1+a)(a^2+a^4+....+a^{n-1})$
$=(a+1)+(1+a)(a^2+a^4+...+a^{n-1})-1$
$=(a+1)(1+a^2+a^4+...+a^{n-1})-1\not\vdots a+1$
Nếu $n$ chẵn thì:
$S=(a+a^2)+(a^3+a^4)+....+(a^{n-1}+a^{n})$
$=a(1+a)+a^3(1+a)+....+a^{n-1}(1+a)$
$=(1+a)(a+a^3+...+a^{n-1})\vdots a+1$
Vậy với giá trị $n$ chẵn thì yêu cầu đề bài được thỏa mãn.
Ta thấy:
\(a+a^2=a.\left(a+1\right)⋮a+1\)
\(a^3+a^4=a^3.\left(a+1\right)⋮a+1\)
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1
Ta thấy:
a+a^2=a.\left(a+1\right)⋮a+1a+a2=a.(a+1)⋮a+1
a^3+a^4=a^3.\left(a+1\right)⋮a+1a3+a4=a3.(a+1)⋮a+1
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1